

MVE a ich prinos v regionálnej energetike

Prof. Ing. Peter Dušička, PhD.

Katedra hydrotechniky

Stavebná fakulta STU Bratislava

Členenie prednášky:

Všeobecná časť

- 1. Čo je to vodná elektráreň?
- 2. Význam a funkcie vodných elektrární pre elektrizačnú sústavu
- 3. Hydroenergetický potenciál a jeho využívanie
- 4. Delenie vodných elektrární

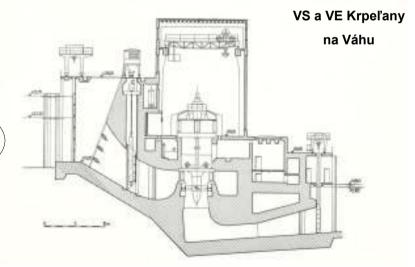
MVE

- 5. Malé vodné elektrárne
 - 5.1 Typy MVE
 - 5.2 Základné schémy MVE
 - 5.3 Základná legislatíva pre MVE
 - 5.4 Ďalšie možnosti využívania HEP MVE v SR
- 6. Ukážka obecnej MVE v Necpaloch

1. Čo je to vodná elektráreň?

Vodná elektráreň =

výrobňa elektrickej energie premieňajúca vodnú energiu vodného zdroja na energiu elektrickú (STN 75 0128 Názvoslovie využitia vodnej energie)


- súčasť viacúčelovej VS
- jednoúčelová VS

(len energetické využitie – väčšinou platí pre MVE)

HYDROLOGICKO-HYDRAULICKÝ VE REŽIM TOKU

POTREBY ES

1. Čo je to vodná elektráreň?

Výkon vodnej elektrárne:

[kW]

Výroba elektrickej energie vo vodnej elektrárni:

$$E = P * t$$

[kWh]

kde: $Q - prietok cez turbíny [m^3.s^{-1}]$

H – spád [m]

η – celková účinnosť premeny energie (závisí najmä od použitej technológie → turbína, generátor, prevod)

(VE > 0.80 MVE > 0.70)

t - čas [h]

HE

2. Význam a funkcie VE pre ES

Význam vodných elektrární vyplýva z ich funkcií, ktoré poskytujú pre elektrizačnú sústavu.

Energetické funkcie VE:

1. statické

- výkonová služba (výroba bázovej EE sem patria aj MVE)
- transfer energie (možný len u PVE)
- 2. dynamické (len regulačné VE je potrebný V₇)
- preberanie strmých špičiek
- výkonová záloha

- z kľudu: VE Gabčíkovo - cca 150 s

PVE Č. Váh - T/Č cca 120/170 s

VE Madunice - 30 s (v minulosti náhradný zdroj vlastnej spotreby JE A1)

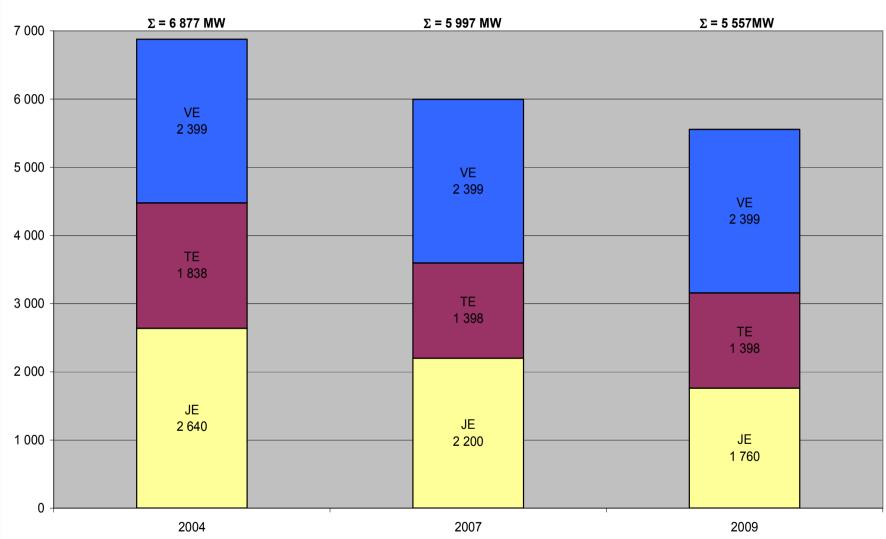
- točivá rezerva

- regulácia frekvencie a odovzdávaného výkonu - stroje v chode

- primárna

do 30 s (napr. VEG 8 x 4,5 MW = 36 MW)

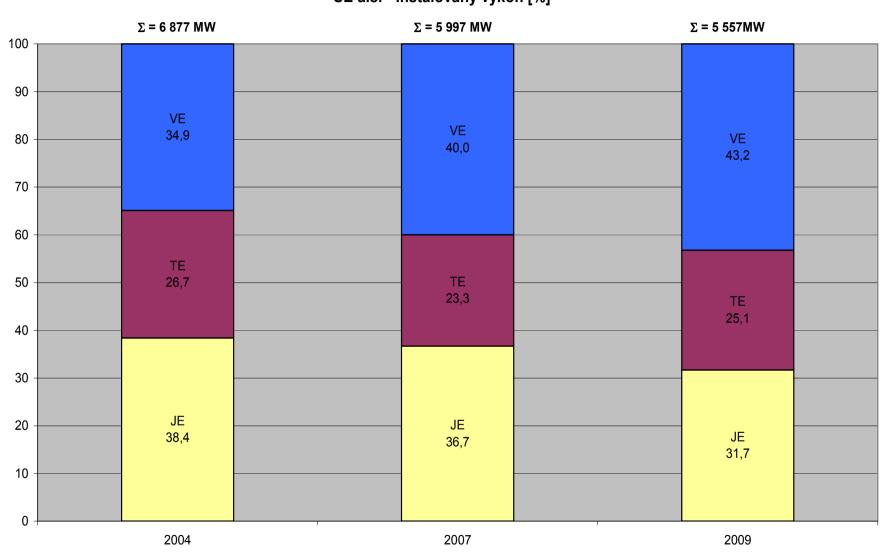
- sekundárna do 2 min.


3. Hydroenergetický potenciál a jeho využívanie

- využívanie energie vodných tokov → základný zdroj získavania energie
- hydroenergetický potenciál = prírodné bohatstvo každej krajiny
- využíva sa vo VE a MVE
- primárny technicky využiteľný hydroenergetický potenciál = HEP
- HEP = súčet E_r na realizovaných a technicky realizovateľných VE a MVE
- vyspelé európske štáty → využitie HEP na 65 až 95 %
- SR → využitie HEP len na **56,4** %

3. Hydroenergetický potenciál a jeho využívanie

SE a.s. - inštalovaný výkon [MW]

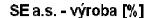

rok 2004 (pred odstavením jadrovej elektrárne V1 v Jaslovských Bohuniciach)

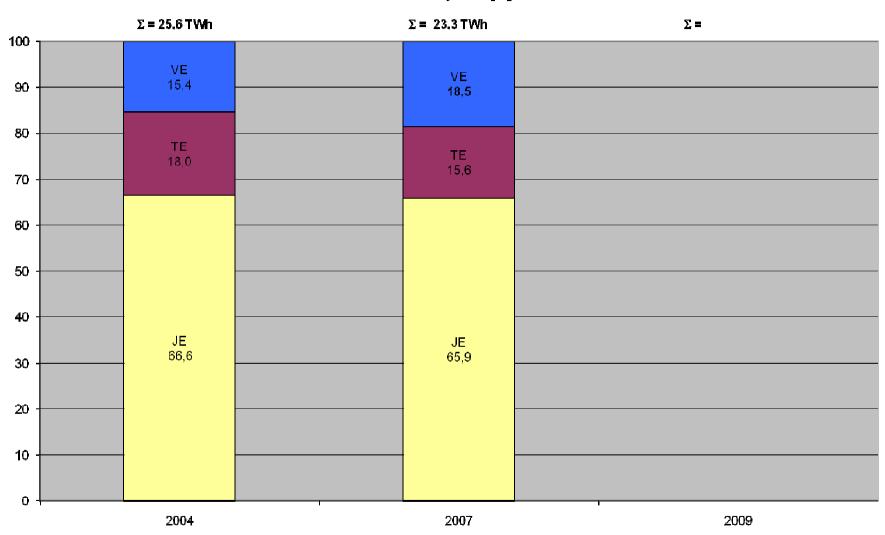
rok 2007 (po odstavení 1. bloku jadrovej elektrárne V1 v Jaslovských Bohuniciach)

rok 2009 (po odstavení 1. a 2. bloku jadrovej elektrárne V1 v Jaslovských Bohuniciach)

3. Hydroenergetický potenciál a jeho využívanie

SE a.s. - inštalovaný výkon [%]




rok 2004 (pred odstavením jadrovej elektrárne V1 v Jaslovských Bohuniciach)

rok 2007 (po odstavení 1. bloku jadrovej elektrárne V1 v Jaslovských Bohuniciach)

rok 2009 (po odstavení 1. a 2. bloku jadrovej elektrárne V1 v Jaslovských Bohuniciach)

3. Hydroenergetický potenciál a jeho využívanie

rok 2004 (pred odstavením jadrovej elektrárne V1 v Jaslovských Bohuniciach)

rok 2007 (po odstavení 1. bloku jadrovej elektrárne V1 v Jaslovských Bohuniciach)

rok 2009 (po odstavení 1. a 2. bloku jadrovej elektrárne V1 v Jaslovských Bohuniciach)

3. Hydroenergetický potenciál a jeho využívanie

Silné stránky využívania HEP:

(v porovnaní s inými energetickými zdrojmi - napr. uhlie, jadro)

- 1. <u>obnoviteľný zdroj</u>
- 2. <u>vlastný zdroj</u> (s výnimkou hraničných tokov)
- 3. pohotový zdroj = **regulačné schopnosti**
- 4. neznečisťuje ovzdušie a neprodukuje odpad
- 5. relatívne **nízke prevádzkové náklady** pri dlhej životnosti (50~100 rokov)
- 6. vyžaduje relatívne **malý počet prevádzkových zamestnancov** (diaľkové riadenie)
- 7. pri citlivom a technicky správnom riešení nespôsobuje devastáciu prírodného prostredia, transformuje ho na novú kvalitu, pričom **pri celkovom zhodnotení všetkých efektov býva využitie HEP ekologicky prínosné**

3. Hydroenergetický potenciál a jeho využívanie

Slabé stránky využívania HEP → dajú sa vnímať z rôznych hľadísk

Ekologické hľadisko

- → z hľadiska ekológov → negatívne vplyvy využívania HEP na okolité prírodné a životné prostredie:
 - 1. zmena prietokových pomerov
 - 2. zvýšenie sedimentačnej resp. eróznej činnosti toku
 - 3. zmena režimu podzemnej vody
 - 4. priechodnosť rýb a vodných živočíchov cez stupne na tokoch
 - 5. potenciálny únik mazadiel (ropných látok)
 - 6. zmena kvalitatívnych vlastností vody
 - 7. ohrozenie vodných živočíchov chodom turbín
 - 8. zmeny druhového zloženia vodných organizmov
 - 9. ovplyvnenie brehových porastov
 - 10. hlučnosť prevádzky
 - 11. záber pozemkov a zásahy do územia počas výstavby
 - 12. urbanistický zásah do okolitého krajinného prostredia
 - 13. ovplyvnenie rekreačnej plavby
- → väčšina týchto vplyvov sa však dá vhodnými opatreniami značne eliminovať
- → kritika vyplýva väčšinou z neznalosti technického riešenia a prevádzky VE alebo MVE, resp. z apriórnej zaujatosti

3. Hydroenergetický potenciál a jeho využívanie

Skresľovanie bilančných hodnôt HEP

• pri hodnotení stupňa využitia HEP sa sleduje % využitia

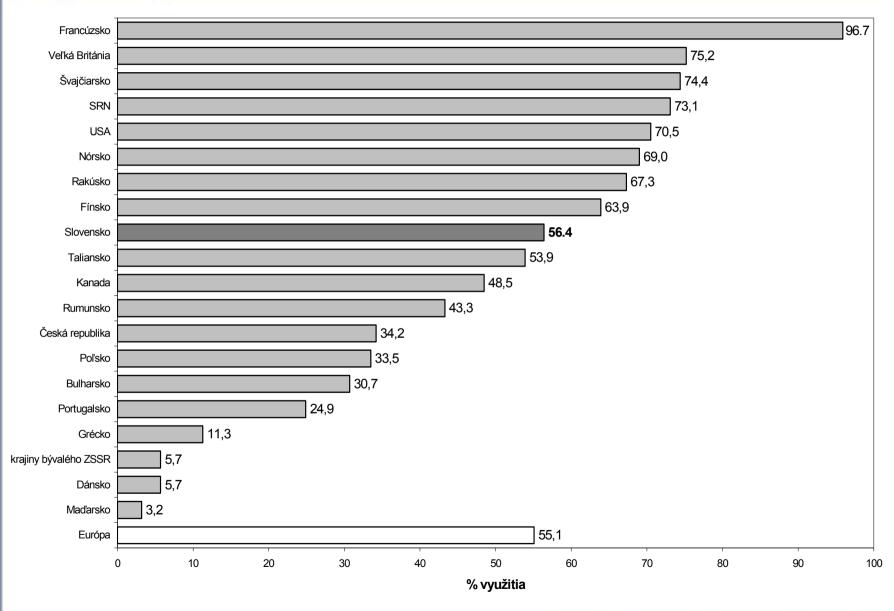
$$\%využitia\ HEP - \frac{využitý\ HEP}{celkový\ HEP}*100$$

problém nastal s bilančnou hodnotou HEP (celkový HEP)

• **pred rokom 1997** (podľa oficiálnych materiálov SE a.s., MH SR, MŽP SR)

HEP SR = 7361 GWh/rok

(pri inštalovanom výkone 2 575 MW)


• **po roku 1997** (podľa Aktualizovanej koncepcie energetiky SR do roku 2005, prijatej Uznesením vlády v 1997)

"upresnený" HEP SR = <u>6 607 GWh/rok</u>

(známy aj pod označením "ekologický" HEP)

3. Hydroenergetický potenciál a jeho využívanie

4. Delenie vodných elektrární

1. podľa inštalovaného výkonu

- nad 10 MW
- do 10 MW **MVE** (STN 73 6881)

2. podľa možností hospodárenia s vodou

A. prietočné

B. regulačné a) s prirodzenou akumuláciou

b) s umelou akumuláciou

c) so zmiešanou akumuláciou (prirodzenou aj umelou)

Prietočné VE (spracúvajú okamžité prietoky):

- prietoky cez vzdúvacie stavby bez V_z
- pod vyrovnávacími nádržami využitie Q_n
- vodojemy odbery
- biologické prietoky (pri prepúšťaní cez vzdúvací objekt)

Regulačné VE - podľa časového hľadiska – regulácia prietoku:

krátkodobá (denná, týždenná)

• sezónna (v rámci roka)

dlhodobá (viacročná)

5. Malé vodné elektrárne

MVE – história vzniku na Slovensku

- MVE vznikali na našom území už koncom 19. storočia predovšetkým pre potrebu:
 - rudných baní
 - úpravní rúd
 - železiarní
 - ako prídavné zariadenia najmä pri mlynoch a pílach
- často boli kombinované s parnými strojmi a s tepelnými elektrárňami
- už v roku <u>1911</u> bolo na Slovensku <u>13 MVE</u> pre verejné zásobovanie
- v roku 1930 viac ako 2 650 prevádzok, z ktorých :
 - <u>96</u> malo <u>zmiešanú prevádzku</u> (mechanická transmisia + výroba EE)
 - len <u>49 samostatných MVE</u> príklady:
 - z oblasti <u>banských prevádzok</u> = Kremnická kaskáda 3 MVE, zásobená vodou privádzačom z toku Turca (Turčekovský vodovod) + najstaršie MVE v Smolníku, Žakarovciach a Krompachoch
 - z oblasti <u>hutníckej</u> = sústava MVE pre železiarne v Podbrezovej (Piesok, Podbrezová, Lopej, Dubová a Jasenie)
 - pre <u>lesné železnice</u> = MVE v Ľubochni, Poprade
 - pre <u>kúpele</u> Rajecké Teplice, Korytnica, Trenčianske Teplice, Vyšné Ružbachy
 - pre <u>papierne</u> Harmanec (MVE Ulmanka, Harmanec I, Harmanec II a Jakub), pre papiereň a celulózku MVE Ružomberok a mnoho ďalších
 - po roku 1948 väčšina z nich neobstála a bola postupne zlikvidovaná alebo aspoň vyradená z prevádzky (v mnohých prípadoch sa dali obnoviť)

5. Malé vodné elektrárne

MVE

- stavba vodohospodárska a energetická
- primárna funkcia = výroba elektrickej energie

pohľad na postavenie a funkcie MVE sa menil s historickým vývojom energetiky

vodné elektrárne = jednými z prvých elektrární na našom území

dodávka EE - **najskôr** pre **samostatné** prevádzky

neskôr po vybudovaní jednotnej ES boli zapojené do ES

s postupným zvyšovaním spotreby EE = budovanie nových zdrojov (vodné, tepelné alebo jadrové) výkonovo oveľa väčšie, ako 10 MW

⇒ zmena postavenia MVE = stali sa v podstate zdrojmi doplnkovými

význam **MVE** = predovšetkým v regionálnej energetike

lokálne vylepšujú bilanciu výroby EE

5. Malé vodné elektrárne

údaje Výskumného ústavu energetického (VÚPEX):

- na Slovensku je hodnota primárneho technicky využiteľného hydroenergetického potenciálu v inštalovanom výkone pripadajúceho na MVE 340 MW
- k 31.12.2001 bolo v SR zaregistrovaných 186 MVE s inštalovaným výkonom 57,33 MW, čo predstavuje využitie len na 16,86 %

pozn.: od 2004 prijatím nového Vodného zákona kompetencie okolo HEP-u "prebralo" vodné hospodárstvo (aj výskum)

<u>údaje Výskumného ústavu vodného hospodárstva (VÚVH)</u>:

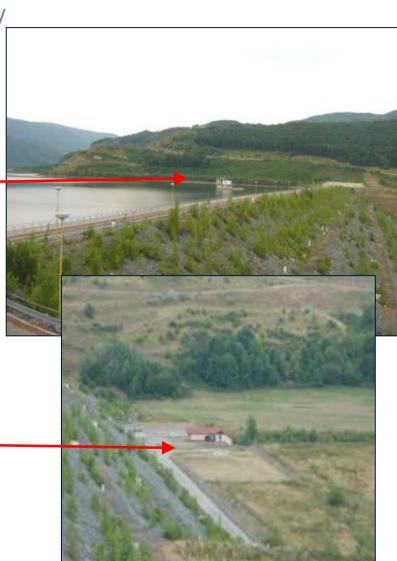
- v roku 2006 bolo na elektrizačnú sústavu napojených 250 MVE a vyrobené bolo cca 250 GWh
- z HEP MVE = 1000 GWh sa v súčasnosti využíva menej ako 25%
- výroba elektriny v MVE predstavuje v poslednej dobe cca 1%
 z celkovej spotreby elektriny v SR


Delenie MVE z hľadiska umiestnenia výroby - 3 typy:

- 1. MVE, ktoré dodávajú **všetku** vyrobenú **energiu do elektrizačnej sústavy**
- 2. MVE, ktoré sa využívajú **prednostne na krytie vlastnej spotreby**, iba prebytky sa dodávajú do sústavy
- MVE, ktoré sa využívajú výlučne na krytie vlastnej spotreby a nie sú pripojené do sústavy

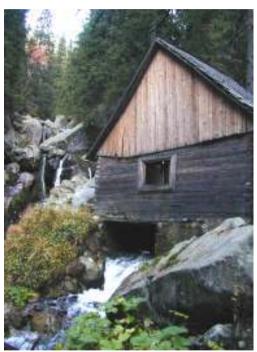
MVE, ktoré dodávajú všetku vyrobenú energiu do elektrizačnej sústavy
 MVE Trnovec na Váhu → P_i = 800 kW, E_r = 3,8 GWh

5.1 Typy MVE


2. MVE, ktoré sa využívajú **prednostne na krytie vlastnej spotreby**, iba prebytky sa dodávajú do sústavy

MVE Málinec II \rightarrow P $_{\rm i}$ = 230 kW, E $_{\rm r}$ = 1 177 MWh

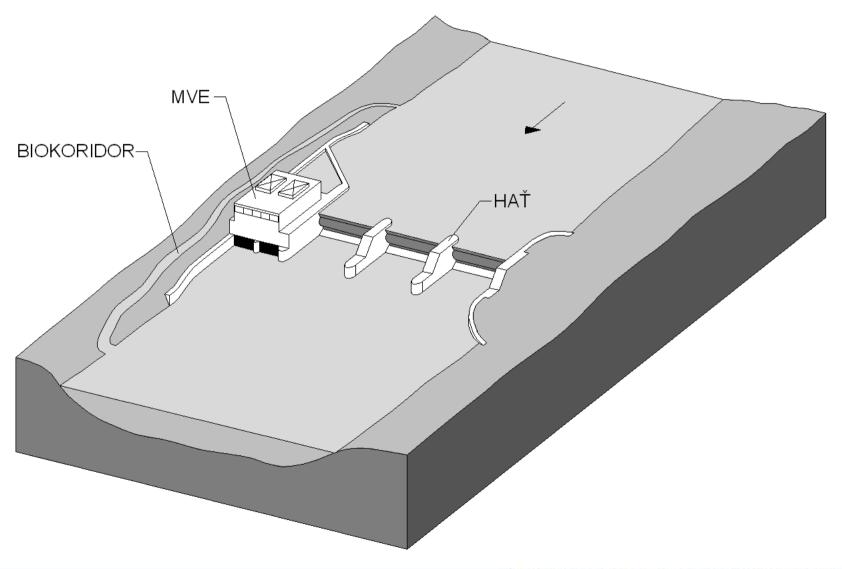
MVE Málinec III \rightarrow P_i = 89 kW, E_r = 303 MWh


3. MVE, ktoré sa využívajú **výlučne na krytie vlastnej spotreby** a nie sú pripojené do sústavy

MVE pri Zamkovského chate (Malá studená dolina) P_i = 35 kW

Základné schémy MVE:

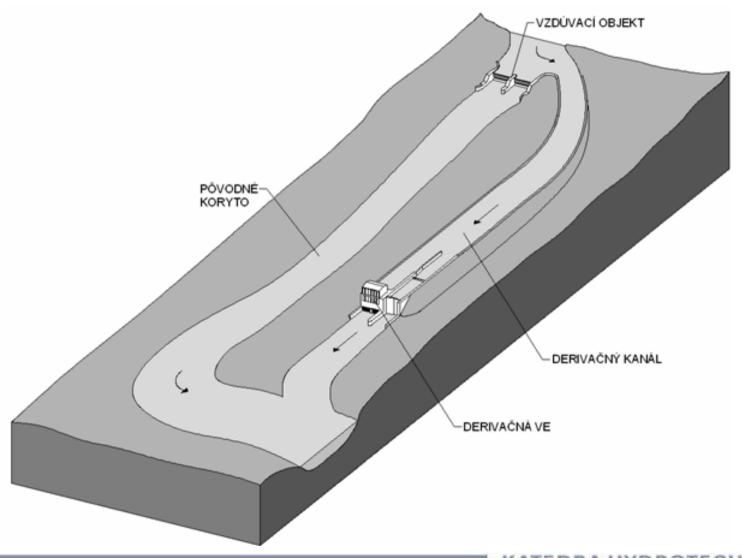
1. Prihaťová


2. Derivačná

- beztlaková derivácia (koryto, kanál)
- tlaková derivácia (potrubie, tlaková štôlňa)
- kombinovaná derivácia → beztlakovo-tlaková

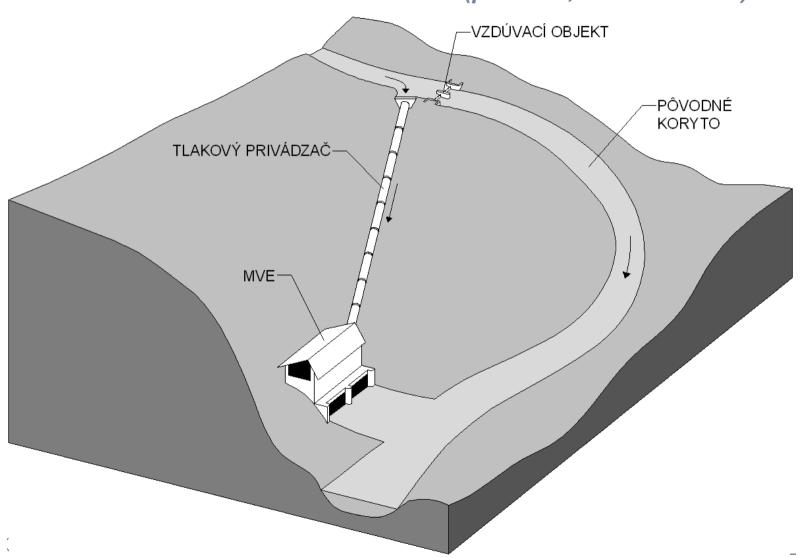
(napred kanál potom potrubie)

1. Prihaťová schéma


1. Prihaťová schéma

MVE Trnovec na Váhu \rightarrow P_i = 800 kW, E_r = 3,8 GWh

2. Derivačná schéma – beztlaková (koryto, kanál)

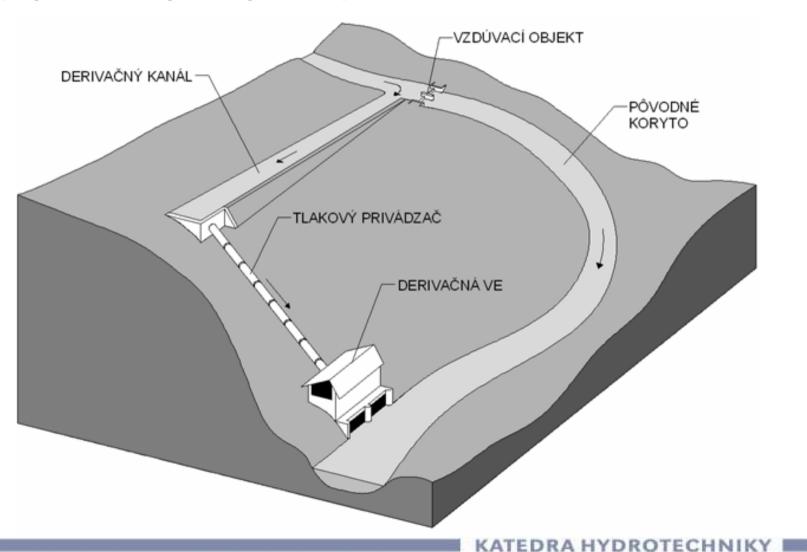


2. Derivačná schéma – beztlaková (kanál) MVE Turá na Hrone \rightarrow P_i = 1 500 kW, E_r = 6,6 GWh

2. Derivačná schéma – tlaková derivácia (potrubie, tlaková štôlňa)

2. Derivačná schéma – tlaková derivácia (potrubie)

MVE pri Zamkovského chate (Malá studená dolina) P_i = 35 kW



2. Derivačná schéma – kombinovaná derivácia → beztlakovo-tlaková (napred kanál, potom potrubie)

5.3 Základná legislatíva pre MVE

- Stavebný zákon (Z.z. 50/1976)
 - vymedzuje proces prípravy, výstavby a prevádzky MVE (MVE je vodná stavba)
- Vodný zákon (Z.z. 364/2004)
 - vymedzuje vzťah správcu vodného toku a investora (prevádzkovateľa) MVE
- Zákon o posudzovaní vplyvov na životné prostredie (EIA) (Z.z. č. 24/2006)
 - vymedzuje postup posudzovania vplyvov na ŽP → chýba posúdenie tokov ako celkov (požadujú rybári, ŠOP)
- Zákon o energetike (Z.z. 656/2004)
 - vymedzuje podmienky podnikania elektroenergetike
- **Zákon o podpore OZE** (Z.z. č.309/2009)
 - cenové zvýhodnenie energie vyrobenej z MVE
- Výnosy Úradu pre reguláciu sieťových odvetví
 - stanovujú výkupné ceny elektrickej energie a odplaty za využívanie HEP alebo odbery energetickej vody

5.3 Základná legislatíva pre MVE

ÚRSO – výkupné ceny elektriny na rok 2010 pre MVE

výkupné ceny				
P _i	sadzba eur/MWh	sadzba SKK/MWh		
do 1 MW	109,08	3 286,14		
od 1 MW do 5 MW vrátane	97,98	2 951,75		
nad 5 MW	61,72	1 859,38		

odplaty za využívanie HEP					
(vodná stavba je v správe SVP š.p.)					
P _i	sadzba eur/MWh sadzba SKK/				
od 100 kW do 1 000 kW	4,4902	135,27			
od 1001 kW do 10 000 kW	7,4837	225,45			
nad 10 000	15,2667	459,92			

odplaty za odber energetickej vody					
(vodná stavba nie je v správe SVP š.p.)					
P _i	sadzba eur/1 000 m³	sadzba SKK/1 000 m³			
nad 10 000 kW	0,1492	4,49			

5.4 Ďalšie možnosti využívania HEP MVE v SR

- súčasné využitie HEP MVE v SR < 25 %</p>
- energeticky najzaujímavejšie toky:
 - horný Váh úsek Bešeňová Krpeľany
 - Orava úsek Tvrdošín Krpeľany (zákaz výstavby stavebná uzávera)
 - Hron
- podpora zo strany EÚ
 - Smernica 2001/77/ES Európskeho parlamentu a rady z 31. januára 2001 o podpore elektrickej energie vyrábanej z obnoviteľných zdrojov energie na vnútornom trhu s elektrickou energiou
- podpora zo strany SR
 - podpora OZE
 - zvýhodnené výkupné ceny elektrickej energie
 - garancia výkupu všetkej energie vyrobenej z OZE
 - podporné investičné programy pre OZE (štátne, eurofondy)

5.4 Ďalšie možnosti využívania HEP MVE v SR

 Koncepcia energetického využitia hydroenergetického potenciálu vodných tokov v SR [VÚVH Bratislava 2008]

ZDROJ	2005	2010	2015
	[GWh]	[GWh]	[GWh]
Malé vodné elektrárne	250	350	450
Biomasa	4	480	650
Veterné elektrárne	7	200	750
Bioplyn	6	180	370
Geotermálna energia	0	30	70
Fotovoltaicke články	0	0	10
SPOLU	267	1240	2300

prekážky ďalšieho využívania HEP-u

- nevyriešený vzťah MH SR (energetika) MŽP SR (vodné hospodárstvo, ochrana prírody) – Štátna ochrana prírody (ŠOP) – Slovenský rybársky Zväz (SRZ)
- s lokalitami uvedenými v Koncepcii nesúhlasí ŠOP a SRZ
- prakticky sa nedá získať SP na MVE (krajské úrady ŽP nevydávajú rozhodnutia až do ukončenia hodnotenia vplyvu na životné prostredie
- ŠOP a SRZ požadujú od investorov v rámci hodnotenia vplyvu na životné prostredie prakticky nesplniteľné požiadavky

6. Ukážka obecnej MVE v Necpaloch

Údaje deklarované výrobcom:

Výkon : 2 x 18,5 kW

Prietok : $0.7 \text{ m}^3.\text{s}^{-1}$

Spád : 2 x 3,55 m

Ročná výroba : 160 100 kWh

Tržba za rok : 502 000 Sk

Náklady : 3 320 000 Sk

Návratnosť : 6,6 roka

Mal byť použitý vodný kolesový motor:

- slovenský patent SK3617U, SK3641U, PCT/SK2004/000005
- bola deklarovaná účinnosť Kaplanovej turbíny
- mala byť splnená aj licenčná podmienka = majetková účasť obce min. 50 %

6. Ukážka obecnej MVE v Necpaloch

rok 2007 → "uvedenie do prevádzky"

6. Ukážka obecnej MVE v Necpaloch

rok 2008

- → meranie celkovej účinnosti premeny energie = 18 %
- ightarrow veľká prevádzková nespoľahlivosť

