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1. Introduction

The aim of this report is to identify different apts to combine terrestrial data with remote sensin
imagery (satellite EO data).

In this respect, terrestrial data means all datasemed ‘in-situ’, i.e. not by remote sensing. T¢as

be either statistics or ground truth data on bi@ndand use/land cover information, etc with
coordinates.

However, before starting the review, the basic anstifor biomass measurement shall be briefly
reviewed.

According to [Herold etal., 2008], there are bakyc four options for biomass monitoring or
measurement:

e Destructive sampling (terrestrial)

« Non-destructive sampling (terrestrial)

* Remote sensing

¢ Modelling
For destructive sampling, the samples are harvesatadl the collected biomass is measured
(weighted). Non-destructive sampling refers todstnial measurements on a sample basis without
actually harvesting the biomass. The most commandastructive sampling of biomass is regularly
done in the frame of national forest inventorie&IgY.
The third option covers the whole group of remaaesing technologies; the different methods have
already been discussed in depth in DeliverablelDrPwork package 2. Finally, the use of models is
another option to estimate biomass potential.

In addition to these individual methods, differentnbinations are possible. This report is focugsed o
the assessment of biomass potential from a combirsed of terrestrial (mainly non-destructive
sampling) and remote sensing data.

A good basic overview of combining terrestrial aadellite data in general terms (not specificadlly f
biomass) is given in [Jennings et al., 2010]. Thiars identify the main problems in data integnati
such as varying definitions, different temporalotason; incongruent data formats etc. and propose
general recommendations to solve these problems.

This report is focused on estimating two biomagesyfrom terrestrial and EO data. The two types
considered in CEUBIOM are ‘forest biomass’ and fegjtural biomass’. They are defined as
follows:

a) Forest biomass is equivalent to ‘woody biomassbadiog to European Norm EN 14961-1

b) Agricultural biomass is equivalent to ‘herbaceoi@mass’ and ‘fruit biomass’ according to

European Norm EN 14961-1.

Within CEUBIOM, specific energy crops will be codsred separately. They can fall under either of
the above mentioned categories (e. g. short rotdteest is woody biomass; rape is herbaceous
biomass).

In this context, the term ‘potential’ is defined éongruence with the definition given in the partne
project BEE.

BEE defined theéheoretical potential as:

“the overall maximum amount of terrestrial biomasgsich can be considered theoretically available
for bioenergy production within fundamental bio-piwal limits”

(from BEE deliverable D3.2)

The ‘potentials’ calculated in the reviewed litenrat in Chapter 2 are almost exclusively theoretical
potentials at a given point in time (time of thealgsis) without considering projection into theure
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and also without considering technical, sustaiitghiecological or economical criteria. So mostly,
the output of these studies is standing biomass. driteria on how to come from the standing
biomass to a realistic potential for bioenergy w#l discussed in Chapters 3 and 4 and in morel detai
in Deliverable 4.3.

Finally, it should be mentioned that the papersrrefl herewith represent only a selection, as auch
review can never be complete.

2. Method review for the combined use of EO and terrestrial data

In Deliverable D2.1 of WP 2, the difference of dirand indirect biomass assessment from remote
sensing is described. None of these methods capjpléed relying exclusively on remote sensing

data. To some extent ground truth data is alwagsled;, e. g. for direct biomass estimation to build
the regression curve.

For direct biomass assessment, it does not maktether it is a single or multiple linear regressian
partial least squares (PLS) regression or an @difneural network (ANN) analysis. Ground truth
(terrestrial) data is always necessary to buildriHation between a remotely sensed signal and the
actual biomass on the ground. Using an indirectagah, also terrestrial data is needed: firstningj
data for the classification of the land cover agclosid, biomass data for each of the land covestype

Studies comparing different combination technigoeEO and terrestrial data are of methodological
interest. [Chen et al., 2009] report abovegrourainaiss (woodlands, shrub sites, grass/herbs sites)
estimates along the Dempster Highway and arountbwiehife and the Lupin Gold Mine by using
Landsat-7/ETM+ and JERS-1/SAR data. For the bionesssnation several analytical techniques
such as simple, multiple or stepwise regressioni$icaal neural networks and kNN have been used.
The combination of JERS backscatter and Landsat/TM8 in multiple regression analysis give the
best biomass equation with r?=0.72 when using ¢ee-approach (i.e. using all points) and 0.78
when using a two-step approach (i.e. stratifyin@dato three classes).

[Roy and Ravan, 1996] developed empirical regressiodels between satellite measured spectral
response and biomass in Madhav National Park (InfBaffetta et al., 2009] implemented a design-
based approach to k-nearest neighbours techniquediapling field and remotely sensed data.
[McRoberts, 2009a] presented diagnostic tools fearaest neighbour techniques when used with
satellite imagery.

To summarize the comparing studies, there is nar @helication for one best method, however most
authors consider kNN methods and multiple regressialysis as the most promising options.

The terrestrial data used in remote sensing stuslieh as the ones mentioned above is generally
acquired for the specific purpose or project. It lia fulfil several requirements which are for
example:

* Positional accuracy

« Thematic congruence of classes with classes oltiaifiaom remote sensing

« Size of the observed area on the ground has tiwefitesolution of the EO data

e Acquisition times have to be coordinated, etc.



CEUBIOM ContractNe: 213634

All these requirements make terrestrial data vestlg. Much research efforts are thus invested in
reducing the efforts for terrestrial data. Apprageinclude the investigation of options to
» transfer terrestrial data from one time of analysianother;
» transfer terrestrial data to a different area (gisenilar conditions);
* use indices rather than the image spectral vatuesduce the sensitivity of the regression to
e. g. atmospheric effects;
* build libraries of terrestrial data for use in mahfferent projects.

For the CEUBIOM approach, obtaining large amourftéearestrial data specifically for biomass
potential assessment all over Europe is not vialiherefore the focus is on using terrestrial data,
which were collectednyway and/or for adifferent purpose. Such data for example can be all types
of statistics, general landcover information, aatianal forest inventories (NFI), etc. The data ttas
be analysed and the satellite based classificatiooedures have to be adapted in an appropriate way
as explained in [Jennings etal.,, 2010]. For exantpe class definitions have to be clear and
transferable between terrestrial and satellite daththe used formats must allow data integration.

In addition, also remote sensing data should bd,ufelready available, such as the GMES data sets
‘image2000’, image2006’, core service products [REQD2, 2009], CORINE land cover products,
MARS products, etc. For the full list and detaits éxisting remote sensing products see CEUBIOM
Deliverable D2.3.

A review of methods to combine these data sets keithiote sensing is given in the following sub-
chapters. In addition to the method descriptiogg dhe achievable accuracies, the size of the study
area (local, regional, national, European, globaf} possible restrictions are summarized.

2.1 Methods for forest biomass potential assessment

A large variety of methods is currently in use, aggi them two main groups can be distinguished.
The difference between these two is the way howeséral data is available.

For the first group, terrestrial data has to beilabke with spatially explicit locationThis is for
example true for NFI plot data, where each plot hakefined location and extent. Methods of this
group generally try to set up a link between thieetdrial measurement and the pixel information in
the EO data. These approaches are sometimes désb ‘battom up approaches’

The second group involves all methods, which used#rial data on an aggregated basis or general
equationssuch as from national statistics. These teradstiata have no more defined location, but
are aggregated to a larger area. Examples woudaltistics on the total amount of deciduous timber
volume in a country or region or the growth anddyieables generated from forest inventories (e. g.
for Austria [Hasenauer et al., 1994], [Eckmilinerale, 2007]). In this case, other parameters sisch
forest age or density are derived from the EO daththen linked to ‘typical’ biomass values in this
area and with the given parameters. Methods utiergtoup are sometimes summarized under the
term ‘top-down approachesin addition, below there are some interestingnexices given under
‘other approachesivhich do not clearly fit into either one or thiaer above mentioned categories.

One could also subdivide the approaches accordindpg amount of helping variables needed to
reach the biomass calculation result. Direct methochinly based on LIDAR data) measure the

height of the trees or stand directly and thernmestt: the biomass from existing equations. Indirect
methodsclassify for example in a first step age classes species from the remote sensing data. In
the second step, this information is linked to agerheight and diameter at breast height (DBH) and
finally in a third step biomass is estimated ugtmg parameters gathered in the second step.
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Bottom-up approaches for forest biomass

The following papers are sorted in alphabeticaéaord

[Barth et al., 2009] suggest a method for improvapgtial consistency in the estimation of forest
stand data. The first step of the method is a kd¢Nignment. In the second step an optimization
algorithm is applied in order to reach certain sppatariation targets. The method was tested inaseec
study where tree stem volume data were assigneddio pixel of forest stands, using satellite digita
numbers as carrier data. The case study standsoaestructed to be 64 hectares squares consisting
of 1600 pixels (each 20x20m). The accuracy of gtemated stand level mean volume was used as a
target in order to avoid drifts in mean volume dgrthe optimization. The method was successful in
three out of four stands. In the fourth case thanm&em volume was slightly overestimated (stem
volume of 375 m3 ha rather than 336 m3 ha).

[Bauerhansl, 2005] investigated the use of satellitagery in the frame of the Austrian National
Forest Inventory. 13 Landsat scenes and a digitedin model were used and combined in a kNN
approach. No accuracy values are given.

[Blackard et al., 2008] generated a spatially thsted dataset of aboveground live forest biomass
from ground measured inventory plots of the conteonrs U.S., Alaska and Puerto Rico. The plot
data are from the USDA Forest Inventory and Analy§ilA) program. To scale these plot data to
maps, they developed models relating field-meastgeponse variables to plot attributes serving as
the predictor variables. The plot attributes cammenfintersecting plot coordinates with geospatial
datasets. First, they developed a forest mask ldetimg forest vs. nonforest assignment of fieldgplo
as functions of the predictor layers using clasatfon trees in ,See5“. Then, forest biomass model
were built within the predicted forest areas udirag-based algorithms in ,Cubist®. The estimated
proportion of correctly classified pixels for therést mask ranged from 0.79 to 0.94. For biomass it
ranged from a high of 0.73 to a low of 0.31.

[Coulibaly et al., 2008] developed a method of agreund forest biomass mapping from Ikonos
high resolution satellite imagery and geospatighdahey assessed a geostatistical method (ordinary
kriging) to map the biomass estimated with the alenetworks approach trained with inventory plot
biomass data. The study area, covering approxign&@120 hectares, is located in the North-West of
New Brunswick (Canada). Reference biomass valuegroyp of species (spruce, balsam fir,
intolerant hardwood, tolerant hardwood and otheiifecs) were estimated using the equations of Ker
(1980, 1984) and inventory data from permanent samijwts (PEP) of 400 m2. The results have
shown percentages of residual errors ranging bet®eeand 9.8% (absolute value) and percentages
of RMSE (root mean square error) ranging betweeh aiid 61.1%.

[Gallaun et al., 2005] describes several methodsbfittom-up approaches in the frame of the
Carbolnvent project. For the Austrian Alpine testaain Salzburg, a KNN method was applied to
Landsat data. It was observed, as in previous esudn kNN that the RMSE is high for the
comparison of small areas and decreases for |laeggons. The RMSE of the volume of growing
stock was between 30 and 60 %.

[Gallaun et al., 2010] used an automatic up-scadipgroach making use of satellite remote sensing
data and field measurement data for EU-wide mappfrgrowing stock and above-ground biomass
in forests. The validation at the regional levebwh a high correlation between the classification
results and the field based estimates with coroslatoefficientr = 0.96 for coniferous; = 0.94 for
broadleaved and= 0.97 for total growing stock per hectare. Thepp&l area is 5 million kinof
which 2 million knf are forests, and covers the whole European Uriten,EFTA countries, the
Balkans, Belarus, the Ukraine, Moldova, Armeniagdmaijan, Georgia and Turkey.
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[Gjertsen, 2007] developed a multi-source foregeimory (MSFI) method for use in the Norwegian
National Forest Inventory (NFI). The study arealisut 60 km x 50 km. The method is based on a k-
nearest neighbour rule and uses field plots froemNF I, land cover maps, and satellite image data
from Landsat Thematic Mapper. The inventory metiodsed to produce maps of selected forest
variables and to estimate the selected forest blagafor large areas such as municipalities. Ia thi
study, focus has been on the qualitative variabl@sinating species group’ and ‘development class’
because these variables are of central interdetést managers. A mid-summer Landsat 5 TM scene
was used as image data, and all NFI plots insidestiene were used as a reference dataset. The
relationship between the spectral bands and tlestfaariables was analysed, and it was found that
the levels of association were low. A leave-oneroathod based on the reference dataset was used to
estimate the pixel-level accuracies. They were dotmbe relatively low with 63 % agreement for
species groups.

[Koukal and Schneider, 2004] describe the use aghd&e Sensing data for the inventory of high
structured forests in mountainous regions in Aasffiyrol and Lower Austria: 2 test side with
114.600 ha and 97.600 ha). Input data are: Inverdata (permanent sampling grid with 11.000
plots) and satellite image data (Landsat TM). ThéNKechnique was used to combine the Landsat
images with inventory data.

[Magnussen et al., 2009] included model-based estira of the uncertainty of pixel-level and areal
k-nearest neighbour predictions of attribute Y froemotely-sensed ancillary data X. The two study
areas are in Minnesota and in Finland (three sepaomtiguous forested areas of the size of 100 ha)
Three forest inventory data sets with multivariteibutes of interest and co-located informationeo
suite of ancillary remotely-sensed attributes (fioamdsat ETM+) were used. The RSME was in the
range from 2.1 % to 3.7 %.

[McRoberts, 2009b] proposed a two-step algorithmwimich the class of a relevant categorical
variable such as land cover is predicted in that fitep, and continuous variables such as volume ar
predicted in the second step subject to the canstizat all nearest neighbours must come from the
predicted class of the categorical variable. In firg step nearest neighbour multinomial logistic
regression and discriminant analysis technigue® werestigated and in the second step the kNN
technique was used. For this study Landsat imagerg used for a study area in northern Minnesota
(6 areas with 15x15 km). The accuracy is about 80%.

[Rauste, 2005] used multi-temporal JERS SAR dattudy forest biomass mapping. The study area
is in South-eastern Finland. In single-date regpessnalysis between backscatter amplitude and stem
volume, summer scenes from July to October prodecectlation coefficients (r) between 0.63 and
0.81. Multivariate regression analysis with 6-d#RS SAR dataset produced correlation coefficient
of 0.85. A combined JERS —optical regression aimalyggproved the correlation coefficient to 0.89.

[Tomppo et al., 2002] developed a multisource andtirasolution method for estimating large area
tree stem volume of growing stock and abovegroundass of trees. Combined Landsat-TM data
and IRS-IC WIFS data, together with field data d&fl Mere applied. Landsat-TM data were used as
an intermediate step between the field data andSWikkels. A nonparametric KNN estimation
method was applied with Landsat-TM data and fidtut data from the Swedish NFI. A nonlinear
regression analysis was used in deriving modelgdbrme and biomass as a function of WiFS data.
The study area is located in the northern partveéd®n and has a size of 1.1 million hectare. The
mean relative difference of biomass aggregateduaicipality level is 3 % compared to the NFI data.

[Tomppo etal.,, 2008] provide a review of how NMlafional Forest Inventories) field plot
information has been used for parameterizatioomafgie data in Sweden and Finland, including pre-
processing steps and the optimization of the etitmaariables. Therefore Landsat 5 TM or Landsat
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7 ETM+ sensors have been used. As a substituteafodsat images, multi-spectral SPOT or IRS-1
images can also be used. For the combination &f fiata and satellite images the the k-NN
algorithm was applied. Relative RMSE of 5% for meafume and 12%, 15% and 16% for mean
volumes of pine, spruce and birch were obtaineskiren test units of 100 km?.

[Zheng etal.,, 2004] bridge the application of réensensing techniques with various forest
management practices in Chequamegon National Fof@stonsin by producing a high-resolution
stand age map and a spatially explicit abovegrdoindhass map. Therefore they coupled AGB
values, calculated from field measurements of i¥Bél, with various vegetation indices derived from
Landsat 7 ETM+ data through multiple regressionyaigmto produce an initial biomass map. This
map was overlaid with a land-cover map to genaaaand age map. The final estimated AGB values
compared reasonably with the independent field masiens (R2=0.67).

In order to summarize all above mentioned studies,following table was created. It shows the
method, type of EO data, the size of the study @aesaan indicator for the operational capability of
the method), achieved accuracy and the type ofstial data used. It can be observed that several
variations of kNN estimators are most popular. lkerthe type of data belongs in most cases to the
group of optical high resolution data (Landsat-)ydéne size of the study areas varies stronglyjtbut

is clearly shown that lower resolution data is eathised for continental-wide applications ([Blackar
et al., 2008], [Gallaun et al., 2010]), while HRtalas mainly used for national or sub-national
applications. VHR data is basically used for logaplications, which was to be expected. Accuracies
are very difficult to compare, because differeatistical measures are used. Finally, in almostyeve
case, national forest inventory (NFI) data wassirce for the terrestrial data.
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Reference Method Remote Approximate | Accuracy Type of
sensing data | size of area terrestrial
data
[Barth etal, kNN & top down| Optical HR| 2,56 km? 75 % (3 of fouf Forest plots
2009] correction (5 -30m) correct)
[Bauerhansl, | KNN Optical HR| Austria NA NFI plots
2005] (5 —30m) (84.0000 km?)
[Blackard Modelling, See5 & Optical MR| Continental Correlation  of| NFI plots
et al., 2008] | Cubist (30-500m) | U.S., Alaska &| 0.31-0.73
Puerto Rico
(almost
10.000.000
km?2)
[Coulibaly Neural networks Optical VHR 197,20 km? RMSE: 17.2 |-NFI plots
et al., 2008] (< 5m) 61.1%.
[Gallaun kNN Optical HR| Province ofl RMSE for| NFI plots
et al., 2005] (5 -30m) Salzburg volume of
(7.154 km2) growing stock:
30 - 60%.
[Gallaun Clustering, fractional Optical MR| 5.000.000 km2| R = 0.97 farNFI plots
et al., 2010] | cover map| (30— 500 m) total growing
calculation, stock per
classification  with hectare
membership
functions
[Gjertsen, kNN Optical HR| 3.000 km? 63 % agreemeniNFI plots
2007] (5 -30m) for species
groups
[Koukal and| kNN Optical HR| 2.122 km? Total  volume NFI plots
Schneider, (5 -30m) aggregated for
2004] the two test
sites: +/-1%
[Magnussen | Modelling & kNN Optical HR| 3 km? RMSE: 2.1 % 1 NFI plots
et al., 2009] (5 -30m) 3.7 %.
[McRoberts, | NN multi-logistic | Optical HR| 1.350 km? Ca. 80 % NFI plots
2009Db] regression and (5 — 30m)
discriminant analysis
& kNN
[Rauste, Multivariate Optical and| 1.444 km? Correlation  of Stand-wise
2005] regression analysis | SAR HR 0.63 - 0.89 forest
data (5 - (depending on inventory map
30m) input data)
[Tomppo Nonparametric kNN| Optical HR11.000 km? Mean relativeNFI plots
et al., 2002] (5-30m) difference  of
biomass on
municipality
level: 3%
[Tomppo kNN Optical HR| Seven areas ARMSE of 5%| NFlI plots
et al., 2008] (5 -30m) 100 km?2 for mean
volume
[Zheng et al.| Multiple regression | Optical HRca. 280 km? R2=0.67 NFI plots
2004] (5 -30m)
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Top-down approaches for the estimation of forestriaiss

[Gonzélez-Alonso et al., 2006] and [Gonzalez-Aloretaal., 2005] show three possible uses of
satellite data of various sources and resolutiorthé generation of forest biomass cartography. The
first one attempts to find statistical relationshigetween satellite-derived NDVI time series aettifi
measurements from the Spanish National Forest toxgmon a province basis (accuracy: 82-95%).
The second one is focused on updating and scaprgysoh a relationship using Envisat-MERIS Full
Resolution data (accuracy: max. 58%). The third wies to produce medium resolution biomass
maps using information derived from the Envisat-ME&RR sensor in combination with finer
satellite data from SPOT5-HRG (accuracy: 61%),dfidata from the Spanish NFIs and forest
cartography (accuracy: 94-96%). The study arehasathole Spanish territory. For the combination
of satellite data with inventory data they usedesgion models.

An experiment was performed by [Santos et al., P@@4he Brazilian Amazon (Tapajés National
Forest and surroundings) to provide airborne SAR @ X- and P- bands over tropical rainforest.
The best biomass model was established after ctnapséere testing of a range of specific allometric
equations to achieve statistically high precisiobiomass prediction. A final mapping result diggla
forest biomass, and accounts for different sucoasstages and primary forest in intervals. The
coefficient of determination for tree height as thest important variable to the biomass calculation
attained a value of R2 = 0.87 on the regressiolysisa

In this study [Quinones and Hoekman, 2002] credi@mnass maps of two study sites at the

Colombian Amazon by using results from polarimeti&ssification algorithm that combines power,

phase and correlation of C, L and P band of AirSédta. Therefore two different approaches

(bottom-up vs. top-down) were used. For one sitg @hd flat) the biomass classes selected are
related to Land Cover types and an empirical m@hstiip between biomass and the average
backscatter is used to create the biomass mag (2#). For the other site (hilly and flooded) a

biomass map is created by reclassifying a biophaydarest structural map with biomass values

obtained from field available data (overall accyrfor the biomass map: 92%).

In the project CARBO-INVENT (e.g. [Galinski, 2005]jwo different top-down approaches to
estimate carbon stock changes were employed: lsing aggregated data from two different NFls
and 2) by using aggregated data from one NFI anddiition the help of the European forest
information scenario model (EFISCEN). The CARBO-IENT analyses were carried out for
Finland, Sweden, Germany, Austria, Ireland andrspai

The basic input data in both cases is derived filoennational forest inventory/ies (aggregated NFI
data). This includes forest area, growing stock ammdement by age-class and forest type. Most
biomass functions, however, use diameter at btesight (DBH) and/or tree height as explaining
variables to generate in the first step stem voluBrewth and yield tables were used to get valaes f
DBH and tree height by age class. Biomass Expartsaators (BEFs) are used to expand from stem
volume to whole tree biomass and to carbon cont&@#son stock changes are calculated in case 1
by simple subtraction (stock 1 — stock 2), whilecase 2, stock 2 is defined as stock 1 + gross
increment — harvesting — mortality (from EFISCEN).

Within CARBO-INVENT, a comparison of this top-dowe the bottom-up approach described
[Gallaun et al., 2005] was performed. This comparisevealed that the deviation between the two
approaches was highest for the youngest age clasbesbottom-up method resulted in lower
uncertainties in the results (of carbon stock andkschanges), but with the drawback of depending
on detailed (plot-level) forest inventory data.clontrast, the top-down approach is much more cost-
efficient. It was observed, that modelling is sémsito the accuracy of the available harvest and
increment estimates.

10
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[Dorfinger and Bachhiesl, 2008] calculated the kass potential from forestry for the province of
Salzburg based on a satellite image classificaifdorest classes (based on SPOT imagery) and yield
tables. In addition, they compared the results waiterage energy demand from households and
industries.

In the GSE-FM project, the product 'National andgiBeal Volume, Biomass and Carbon
Statistics'(Code: GSE-FM-VBCS) is a product desigfee central Europe to obtain the information
required for UNFCCC- and Kyoto reporting in thetseof LULUCF. The products include volume,
biomass and carbon stock estimates in table formeabrding to FCCC and Kyoto reporting
requirements. These estimates are

1) Area change of the classes forest land, croplaradstand, wetland, settlements, other land

2) Forest area (with a higher accuracy than 1)

3) Change of stem volume

4) Change of woody biomass

5) Change of carbon stock
The methods are partly top-down and partly bott@rapproaches, all details can be found in [GSE-
FM, 2010].

Other combination approaches for forest biomass

The following three papers are mainly using treestand height from remote sensing (LIDAR or
stereo) in combination with allometric models tdireate biomass, while the other approaches are
either based on models or use a different methadetinod combination.

[Simard et al., 2008] describe a new systematichotilogy to measure mangrove height and
aboveground biomass by remote sensing. The methiodsed on SRTM (Shuttle Radar Topography
Mission) elevation data, ICEsat/ GLAS waveforms (Ice, Cloud, and Latdevation
Satellite/Geoscience Laser Altimeter System) amettl fdata. The study area is Colombia with an
extension of 1280 km2. They compared height estimanethods based on waveform centroids and
the canopy height profile (CHP). Linear relatiomshbetween ICEsat height estimates and SRTM
elevation were derived. So they found the centobithe canopy waveform contribution (CWC) to be
the best height estimator. The field data was tsedtimate a SRTM canopy height bias (-1.3m) and
estimation error (RMS = 1.9m). The relationship \epplied to the SRTM elevation data to produce
a mangrove canopy height map.

[Koch et al., 2009] describe enhanced processelineate stand or sub-stand units and to extract
different forest information based only on airborbEDAR data. For the stand delineation an
automatic process was developed which providesaadsbr sub-stand unit delineation. With a
combined method the stand boundaries as they tklisked by the mapping units today, as well as
sub-stand units which have in common physical dtarstics indicating the same management
disposition, were assessed. Finally a first vaihaof the forest stand unit delineation is prodde
The process was tested in two different test s@e® in a sub-mountainous area in Rheinland-Pfalz
(4 km?) and the other is a mountainous forest ideBaWirttemberg (9 km?2), both with a mixture of
conifers and broadleaf forests. The correlationffmoent between LIDAR measurements and field
inventory averages 78.2 for coniferous trees, &ir.@eciduous trees and 84.1 for the top height per
sample plot.

[St-Onge et al., 2008] assess the accuracy ofditestf height and biomass estimates derived from an
Ikonos stereo pair and a lidar digital terrain mMdderM). The coefficient of determination reached
0.91 and 0.79 for average height and biomass, ceégply. In both cases, the accuracy of the lkonos-
lidar canopy height model (CHM) predictions waglslly lower than that of the all-lidar reference
CHM.
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In [Chopping et al.,, 2008] a rapid canopy refleceamodel inversion experiment was performed
using multi-angle reflectance data from NASA Mutigle Imaging Spectro-Radiometer on the Earth
Observing System Terra satellite. The goal wasbtain measures of forest fractional crown cover,
mean canopy height, and aboveground woody bionmskrige parts of south-eastern Arizona and
southern New Mexico (>200.000 km?2). The resultsasdtbgood matches with maps from the USDA
Forest Service, with R2 values of 0.78, 0.69 a®d @nd absolute mean errors of 0.1 - 2.2 m.

In response to an announcement of the German Amres@enter (DLR) for a national Earth
observation mission, the Friedrich-Schiller Univigrsena and the JenaOptronik GmbH proposed the
EO-mission CARBON-3D. The data products of this tmsénsor mission will for the first time
accurately estimate above-ground biomass, onecafntbst important parameters of the carbon cycle.
This mission will simultaneous acquire data witmalti-angle optical instrument and with NASAs
Lidar system VCL (Vegetation Canopy Lidar). The @&t instrument onboard Carbon-3D is a
BRDF-imager that extrapolates the laser-retrieveijtit profiles to biophysical vegetation maps
using the horizontal, spectral information as vl multidirectional information. The aim of this
mission is to reduce uncertainties about net effemft deforestation and forest re-growth on
atmospheric CO2 concentrations. [Hese et al., 2004]

[Haapanen and Tuominen, 2008] evaluated the patenfi the combination of Landsat ETM+
multispectral data and aerial photograph spectrdltaxtural features for forest variable estimation
The studied stand variables were mean height, laasalper hectare, and the volume of the growing
stock. Several approaches were tested when corgbthi image data sources: feature selection,
feature weighting, satellite image-based stratifice and combination of individual estimates by
weighting. The highest accuracies were obtainednwb@h data sources were used. There were
several good ways to combine the data sourcesufeeaelection with generic algorithm and
subsequent feature weighting gave the lowest meamme RMSE (63.7 m3/ha, 65.3 percent of the
mean).

[Hu etal.,, 1996] used an approach to estimatimgnbss by integrating satellite data and carbon
dynamics model. Anural actual net primary produttiNPP) is first estimated with monthly
composite 1l-degre AVHRR Normalized Difference Vegien Index (NDVI) data using the
production efficiency approach in which canopy abed photo synthetically active radiation is
transformed into net primary productivity. NPP esties are subsequently incorporated into primary
production is considered. NPP estimates are subga#ylncorporated into a carbon dynamics model,
PHYTOMASS model, to simulate biomass accumulatimerasuccession until equilibrium with
climate. A global map to terrestrial biomass isafiy generated based on the estimation results afte
their validation with field measurements. The bismastimates are validated with 98 sites of field
measurements with a correlation coefficient of 0.44

[Thenkabail et al., 2004] developed biomass modelsalculate carbon stock levels of the West
African oil palms using multi-date wet and dry smatK ONOS images. Four IKONOS images, each
of about 13 500 ha were selected for the two remtesive areas. Allometric equations related
aboveground palm biomass to their stem heights.ificapregression models based on field plot data
were established to determine wet and dry biomasd palm plantations in IKONOS images. The
best explained between 63 and 72% of the varighilithe data. Model evaluations with independent
datasets showed there is 28-36% uncertainty inbélvynass predictions. The best results had an
overall accuracy of 74.5% using all four IKONOS Hdan

The FAO Forest Resour ces Assessments in 2000 and 2005 ([FAO, 2001], [FAO, 2006]) cotket

and summarized 229 national reports on forestudicl forest biomass. A special working paper
[Garzuglia and Saket, 2003] on woody biomass basethe FRA 2000 data states that national

12



CEUBIOM ContractNe: 213634

reports from the individual countries are not pregan a harmonized way. Three levels of reliapilit
of the data are defined:
1 — high: computed from NFI data based on field@amg complemented by thematic mapping
2 — medium: mainly based on remote sensing
3 — low: based on secondary sources, general assess statistics and expert estimates.
The procedures for the calculation of volume armiraiss in tropical areas are adopted from [Brown,
1997]. For industrialized temperate-boreal cousirithe technical specifications of [A. Bombelli,
2009] are followed.
In addition to the new ‘standard’ Forest Resousesessment 2010 (FRA2010), a remote sensing
survey (RSS) is currently carried out in the frash€&RA2010. The two main components of this RSS
are:
1. Generating a new, validated global tree cover mgpgutime-series imagery from MODIS
satellites at 250 m resolution.
2. Gathering and analysing the best existing globalgieny (Landsat images at 30 m resolution)
from 1975, 1990, 2000 and 2005 for improved estaf forest area and forest area change.
This is done on the basis of a regular sampling @i sample every one by one degree
longitude/latitude).

2.2 Methods for agricultural biomass potential assenent

Quite some references have been already givereiétiverable D2.2 on SAR data. Most of these
studies are using specifically derived terrestaa as for example [Karnchanasutham et al., 1995],
who evaluated the capabilities of BRS-I SAR datarfmnitoring of rice planting acreage and its
growth reaching an accuracy for the rice mapping8% and the overall accuracy of 79%. Another
work by [McNairn et al., 2000] postulated that thalti-polarized configuration of RADARSAT-2 is
likely to provide more information related to craggfructure and crop condition than previously
available sensors to address the sensitivity oftimpolarized SAR data to characteristics of corn,
wheat and soybean crops. The HH-HV-LL 3-polarizaticombination had the highest Kappa
coefficient (0.92).

Aside from these very specific studies, there large variety of studies on crop type classifiaatio
where only a selection can be cited below. Althoagip type is not the required information, it can
be seen as a first step towards biomass assesdméme. second sub-chapter, combined approaches
to estimate biomass are reviewed.

Crop type classification (first step towards biomastimation)

Studies in this section do not assess biomasspriytthe crop types as their final mapping result.
Therefore, these studies provide only the firgp stean indirect approach, which would then need a
second calculation of biomass per crop type. ThHeviing papers are only a small extract from the
large amount of studies in this field.

[Feingersh et al.,, 2001] tested the use of radar @ptical imagery and their synergy for crop

mapping, with dependence on the sequence of preesong and processing techniques in the
mapping procedure. Classification accuracy of argps based on synthetic aperture radar (SAR),
visible-infrared (VIR) and fused imagery reached822% and 76% respectively. Majority based

object classification does not improve significgritie overall accuracy.

[Wardlow and Egbert, 2008] evaluated the applicggbf time-series MODIS 250 m normalized
difference vegetation index (NDVI) data for largea crop-related LU/LC mapping over the U.S.
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Central Great Plains. A hierarchical crop mappirmgqxol, which applied a decision tree classif@r t

multi-temporal NDVI data collected over the growirgpason, was tested. The hierarchical
classification approach produced a series of foup-celated LULC maps that progressively
classified: 1) crop/non-crop, 2) general crop ty(@talfa, summer crops, winter wheat, and fallow),
3) specific summer crop types (corn, sorghum, aybeans), and 4) irrigated/non-irrigated crops.
The series of MODIS NDVI-derived crop maps gengrakd classification accuracies greater than
80%. Overall accuracies ranged from 94% for theegarcrop map to 84% for the summer crop map.

A crop map of the Netherlands was created usingthadology that integrates multi-temporal and
multi-sensor satellite imagery (Landsat TM, IRS-88 ERS2-SAR), statistical data on crop area and
parcel boundaries from a 1:10 000 digital topogiaphap [DeWit and Clevers, 2004]. In the first
phase a crop field database was created by exigastiatic parcel boundaries from the digital
topographic map and by adding dynamic crop bouadarsing on-screen digitizing. In the next phase
the crop type was determined from the spectral pineinological properties of each field. The
resulting crop map has accuracy larger than 80%nfust individual crops and an overall accuracy of
90%.

The purpose of this project by [Cook et al., 1986 to establish a crop specific classificationgor
group of counties in Southeastern North Dakota.dsah TM data (from May, June, July, and
September 1994) provided 24 bands of multi spettfafmation (the thermal bands were not used).
Extending this crop classification throughout Nofakota using AVHRR data and developing
relationships to spring wheat yield are the foctithe North Dakota spring what yield modeling
project. Crop information came from both the Na&lbAgricultural Statistics Service (NASS) June
Agricultural Survey (JAS) and the Farm Services ge (FSA) for the 1994 growing season.
ERDAS IMAGINE2 software was used in the clusterimgd classification of the four dates of
Landsat TM imagery. Mapping accuracy is around 85%.

[Gonzélez-Alonso and Cuevas, 1997] used regressitimators for crop area estimation. They found
out that regression estimators are less prone rmarsecompared to other methods when using
terrestrial data from another year than the stellnagery. This however is only true if the

magnitude of change between the year of satelite dcquisition and ground survey is not too large.

A simple combination approach of terrestrial and @ ®a is disaggregation of statistical data. This
means, if terrestrial data (statistics) are avélamly on an aggregated level (e.g. for commusiitie

at a low spatial resolution), remote sensing badassifications can be used to disaggregate the
information to more spatial detail. This is for exae true for IACS data, which is in Austria only
available for 100 by 100 m squares due to datademntiality issues.

Agricultural biomass estimation

The MARS project has already been described in the framBebifverable D2.3. [Gallego, 1999]
explains two different activities of the MARS projen crop area estimation:

1. The regional crop inventories, that combine higgolution satellite images and ground surveys
in a classical statistical scheme based on are@efssampling and ground visits providing
the main estimation variable.

2. The rapid estimates of crop area change at thdekel based on a more flexible expert
procedure combining general information and sé¢elihages on a fixed panel of sites.

The methods were tested on five pilot regions graxmately 20.000 km? each. The accuracy for
various crops in the pilot regions was between 49%h66%.

For yield forecasting, agro-meteorological modé&sop Growth Monitoring System - CGMS) and
low resolution remote sensing methods are usedimnmbmation with the crop area estimation. The
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description of the methodology (including use of teoeological data, agro-meteorological
processing, use of remote sensing data and statidita analysis and result validation) is acbéssi
on the website (sed@tp://www.marsop.inf

[Hu et al., 1996] describes a promising approackstimating biomass by integrating satellite data
and carbon dynamics model. Annual actual net psinmoductivity (NPP) is first estimated with
monthly composite 1-degre AVHRR Normalized DiffecerVegetation Index (NDIV) data using the
production efficiency approach, in which conversioefficiency of canopy absorbed
photosynthetically active radiation into primaryoguction is considered. NPP estimates are
subsequently incorporated into a carbon dynamiagem®HYTOMASS model, to simulate biomass
accumulation over succession until equilibrium wéthmate. A global map to terrestrial biomass of
1989 is finally generated based on the estimatiesults after their validation with field
measurements. The NPP estimates are validatednlil4 sites of field measurement available; the
correlation coefficient is 0.65. The biomass estemaare validated with 98 sites of field
measurements; the correction coefficient is 0.44.

The aim of a study by [Butterfield and Malmstroérdp2] is to examine the influence of phenological

changes on NDVI-biomass relationships in annuakgga to improve the capacity to evaluate
grassland dynamics over time. Also relationshiggvben biomass and fAPAR and between biomass
and LAI were analysed. To do this, they planteddseof three annual grass species in an agriclltura
field on the Michigan State University campus iD20Accuracy between R?=0.73 and R?=0.82.

[Yamamoto et al., 2008] estimated biomass using fieeasurement data and NOAA AVHRR LAC

satellite data, and evaluated the estimated biomnsiag meteorological station data. The NDVI was
calculated from convolved reflectance to NOAA AVHRIRectral resolution. As the result, they
found that it is possible to estimate vegetatiooniziss without influence of clouds and vegetation
growth with more than 5 days composite of NOAA AVRIRAC data. Biomass in the wide area
could be estimated with less than 10% error.

[Chen etal.,, 2009], already described in the ohiciory part of chapter 2, used biomass
measurements of grass (including herbs, lichennaosk) as well as shrubs and correlated them in a
bottom-up approach to the remote sensing signals ftandsat TM and JERS data. The results
indicate that a transfer of the developed regressiodel from one site to another is possible withou
large errors.

[DiBella et al., 2003] combined SPOT VEGETATION mad resolution optical data with the
STICS prairie simulation model to improve model dicdons and evaluation. Thus, in this case,
satellite imagery was used as a kind of ‘grounthtrecompared to the simulation model.

[Eerens etal., 2001] used medium-resolution NOAYHRR or also SPOT VEGETATION in
combination with the terrestrial IACS data to impgdhe biomass (dry matter) predictions. The main
processing steps are: (1) filtering of the multipemal image data; (2) spectral unmixing of the sear
satellite pixels to the IACS segments; (3) estioratf dry matter production by using solar radiatio
and temperature; (4) calculation of the cumulatisies to reach a quantifyable amount of harvest
material; (5) differencing to assess zones of meggd or retarded growth compared t previous years;
(6) regionalization including data reduction anthfly (7) calibration and integration with the oféil

yield statistics.

The CROPMON project [Suba et al., 2009] was esthbll to support the mapping of different crop
types (winter wheat, winter and spring barley, raaigugar beet, sunflower, alfalfa and maize to
ensilage) in the activity area and for yield fosigag covering large areas. In the operational @has
partially the subsidies system was based on tlmasbn.

Methodology

15



CEUBIOM ContractNe: 213634

1. Experimental Applications Validations in the fAgidture (1980-1996)

- the development of the baseline crop area mappmdgaaea assessment methods plus the
yield models’ creation and experiments based distts (1980-90) and,

- the final accomplishment of the methodology to prepand validate them for operational use
(1993-96)

2. Operational phase (1997-2003)

« information collection on the area of the majorpso
e accompanied by problems areas delineation focusidgought assessment plus the provision
of reliable yield forecast and final yield estimate

The method comprises frequent time (NOAA AVHRR) acdurate spatial (Landsat TM, IRS-1C/D,
SPOT) sampling. The model calculated vegetatiomxed (NDVI, MGVI) to analyze the spatial
distribution and strength of the drought in theuatyear. Waterlog and flood mapping and its effect
for crop development also helped the forecast naetQaiality checks are done by farms ground data
analyses and the use of empirical confusion matrice

3. Usability for the harmonized approach

From the review of forest biomass studies, sevaratlusions can be drawn:

1) bottom-up approaches are generally more accuratettip-down ones

2) the co-location of NFI plots and remote sensing @ad dealing with related uncertainties are
not trivial in bottom-up approaches

3) a good predefined stratification improves the rssul

4) generally tree height information leads to moreusate biomass estimates

5) NFI data (either plot-level or allometric equatipissthe most commonly used terrestrial data
source

From the review of agricultural biomass studies,dhtcome is:

1) direct biomass measurement using SAR technologysisaightforward approach at the cost
of high complexity

2) crop area estimation and also yield are often stipg@dy modelling

3) existing terrestrial data (from statistics) areehataken into account

4) achievable accuracy and spatial detail are rewersmirelated: for low resolution data with
spatial resolutions with more than 100 m the eraemessmall, while for detailed mapping the
errors are much higher

5) meteorological data and models play a significat# for short-term forecasting

Generally it has to be mentioned that not necdgsanily one approach can be used, but it is also
possible to define a set of valuable approachds eléarly specified terms and conditions, which can
be used. Such an approach is for example alsoafetldn the post-Kyoto carbon reporting system,
where three different ‘TIER’ levels are defined atfe countries can decide according to their
situation and data availability which TIER leveldiooose.

3.1 Considerations regarding the user requirements
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In comparison with the user requirements (D 4.hgré are some topics, where methods and
requirements fit very well. On the other hand, ¢hare also some significant discrepancies. To
recapitulate, the main requirements from D &é4:

a) Generateone basic potential with well defined boundary catiohs (restrictions) applicable
for many users. This basic potential can be furtlezd for individual potential assessments
for specific user needs, but not be done in theéaf the harmonized approach.

b) Full update every 3 - 6 yearswhenever spatial data, e.g. core service produate
available. In addition, astatistical updateof the economical potential (maybe only for
agricultural biomas$ can be donannually.

c) Existing data should be used in order to keeptsaslow as possible

d) The resulting potential should bmuitable for different purposesespecially for internal
information, policy and planning, disseminationpogting and maybe (lower priority) also
for subsidies and subsidy control. Potentials witlry specific boundary conditions only
important to or available in one country or regioannot be considered.

e) The resultingaccuracy should be in theange of 80 — 85 %and the errors should be
transparently documented and traceable wherevesiples

f) It can be recommended to at least generatdhree main thematic classeé®rest biomass’,
‘agricultural biomass’, ‘other biomass'. Further ftiérentiation should be done based on
accuracy, time and cost considerations as wellasel on the existence of data (e.g. if from
core services already hardwood/ softwood and cropsfmanent crops/ grassland is
available).

g) The product should be a continuous GIS map witftade of 1:75.000 — 1:100.00¥ector
data on NUTS levels can be generated on this lmaaddition.

h) The method should bef intermediate complexityand be accompanied by training. The
processing time (without EO data pre-processingusthbe around 6 — 9 months.

Regarding equirements a) and d), there is no objection from the methods point ieiw The most
important issue will be the availability of boungdaconditions information. This topic will be
discussed in Deliverable D 4.3.

Regardingemporal resolution (requirement b), there is a main drawback, if we want to consaler
bottom-up approach for forest biomass. Such anoagprwould require NFI plot data available and
accessible every 3 — 6 years. This is not posssiiee most NFIs are done in 10-years intervals and
thus, no information would be available in betwe€his leads to the recommendation to rather use
top-down approaches than bottom-up ones or evéntioah combination of the two in an alternating
way. For agricultural biomass estimation, thereqiste clear need for a stronger integration of
existing statistics, which are to a large extergilable on an annual basis. The crop area estimatio
does not have to be updated so frequently andafawsing the usage of core service data.

Regardingcosts (requirement c); there is a mayor contradiction with the requiretren especially
regarding tree height as an important parametefoi@st biomass estimation. Tree height is rather
expensive to obtain, but it improves the resultagguracy significantly. Thus, here is a major
optimization potential (see chapter 4). For agtigall biomass, there is not much contradiction from
the cost point-of-view, if existing data is progedsed. In general, not only for terrestrial data,
existing data sets should be employed, but the danrmie for remote sensing data and products.
Thus, existing imagery such as the ‘image2000’ ‘andge2006’ data sets of GMES should be used,
if methods require the basic imagery. In case q@r@gches building on land cover products, core
service products from GEOLAND 2, CORINE land cosad similar initiatives are data sources to be
exploited in order to keep the costs low.

Regardingaccuracy (e), in forestry, the use of LIDAR or stereoscopica&thods to derive tree height

is recommended to achieve the needed accuracydfiaultural biomass, accuracy is rather difficult
to assess, however, the large amount of produstatistics are largely accepted and thus should be
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used. If projections in the future are neededatmuracy requirement is very difficult to fulfilhis,
long term projections should be avoided if the aacy requirement should be satisfied.

Regardingrequirement f (thematic detail), in the forest domain hardwood and softwood can be
differentiated; this is done on a regular basisqah the core service products, [GEOLANDZ2, 2009])

and is also necessary to reach the needed acci@cggricultural biomass the main crops should be
treated separately, which is done both in the prbdo statistics and also to a certain degree én th

land cover classifications. However, there is omegd discrepancy in this: if the crop areas are
updated only every 3 -5 years, but crop types obhamually (or even two times a year), this is a
critical deviation.

The scale (requirement g) poses a challenge, since up-to-now, most continaid assessments are
based on medium resolution data with spatial réolaround 250 — 500m, which would result in a
scale of 1:1.000.000. In order to achieve a schle1®0.000, HR data would be necessary, which is
currently mostly used in national or regional assents. However, the products of geoland2
[GEOLAND?2, 2009] are also in this scale, thus ibgld be feasible to calculate also biomass based
on the GEOLAND core service products.

Regardingrequirement h, there is again a contradiction with requirementbeglcause often, more
simple methods lead to less accurate results. However, it is igod to mention that the robustness
of methods should be given a higher priority thia@ ¢complexity of methods. Although many users
wanted to implement the assessments themselves,alveays is the option of outsourcing part of the
work. Regarding complexity in case of equal robessnhowever, for forest, it is easier to implement
a top-down assessment than a highly complex botienkNN analysis. Regarding agricultural
biomass, indirect assessments based on opticaladataasier to implement than direct assessment
based on SAR data and thus should be preferred.

3.2 From theoretical to technical/ecological/econapotential

As already mentioned, most of the techniques restieso far consider the theoretical potential, which
is the base for further calculations. In order #@icuolate the technical, ecological or economic
potential, several restrictions, often also terrasboundary conditions, are necessary. Some widely
accepted general boundary conditions are listeaibel
1) utilization of forest biomass for energy cannoeifdre with use of forest fibre for industry
2) utilization of agricultural biomass for energy cahmterfere with use of agricultural products
for food or livestock feeding
3) land in protection areas cannot (unrestrictedlyyiged for biomass production
4) usage has to be sustainable, e.g. in a well mantayedt, only the increment of forest
biomass can be harvested.
Some studies with respect to boundary conditioasnagntioned below, however, this topic and the
final definitions regarding the boundary condition<CEUBIOM will be part of Deliverable D 4.3.

[Asikainen et al., 2008] calculated the biomassptiél from forest in the EU-27 using technical and
economic boundary conditions. For technical consiiten, the percentage of mountain area of each
country was used. For economic considerations, I\ndabour costs, hourly costs for harvesting
machinery and different price scenarios for transpbwood material were used for eight out of the
27 countries. All calculations were done on a couby country basis.

In the RENEW project [Seyfried, 2008], differentumalary conditions for forest and agricultural

biomass potential assessment for fuel were sesiragghtforward manner. Regarding forest biomass,
the increment and thinning potential was used bed teduced by the amount of biomass needed for
industry (fibre). In the agricultural biomass domaihe amount of cereal straw, oilseed straw and
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maize straw were estimated and reduced by the asmoeeded for animal feed or bedding and other
fibre needs.

The European Environment Agency (EEA) publishedgort on: ‘How much bioenergy can Europe
produce without harming the environment?’ [Europ&avironment Agency - EEA, 2006]. In their
prediction for 2030, they define the following kegvironmental (ecological) constraints (which are
mainly considering agricultural land):

1) The present share of ‘environmentally orientatadhing would need to increase to about 30
% of the Utilised Agricultural Area (UAA) in mostelhber States, except for densely
populated countries such as Belgium, Netherlandgembourg and Malta where the
agricultural land per head ratio is very small. tinese countries, the necessary share was set
at 20 % of UAA by 2030.

2) At least 3 % of currently intensively used farmlahduld be made available by 2030 for
nature conservation purposes in order to re-crestelogical 'stepping stones' to increase the
survival and/or re-establishment of farmland spediethese areas.

3) Ifin future extensive land use categories sucheamanent grassland, olive groves and
dehesas/montados are released from agriculture thedfore become potentially available
for biomass production, these should not be ploddbetargeted biomass crops. Instead
they should be maintained under their current laoder and ecological structure, while
biomass from grass cutting or tree pruning coulchbevested for bioenergy production.

4) Biomass crops chosen for future bioenergy prodaditmould be selected carefully with
respect to both their environmental pressures &ed potential to positively influence the
landscape and biodiversity quality of an area. Thteria for prioritising these crops on the
basis of their environmental performance shouldive effects on water, soil and farmland
biodiversity.

Another EEA publication from 2007 is focussing e £nvironmentally compatible biomass for bio-
energy from European forests [European Environnfggéncy - EEA, 2007]. They considered
protected areas, biodiversity, soil erosion andmction, site fertility and nitrogen inputs as
parameters for boundary conditions in terms ofasnable and environmentally compatible potential.
In addition, also an economic model was appliedragyy a fixed price for wood chips and varying
costs for extracting wood residues from the forgkire details on the model and model structure are
given in [Kallio et al., 2004].

The Austrian Research and Training Centre for Reyrddatural Hazards and Landscape (BFW)
carried out a study assessing the forest biomaAsistria commissioned by the Austrian Ministry of
Agriculture and Forestry; see [ForschungszentrundW8FW, 2008] and [Forschungszentrum Wald
- BFW, 2009]. In this study, different aspects swh sustainability and biodiversity, economic
developments (five different scenarios) and fodifedent silvicultural treatment scenarios were used
to model the biomass until the year 2020. For numiils on the different economic scenarios see
[Gschwantner, 2009] and for the silvicultural treehts and their respective restrictions see
[Ledermann and Neumann, 2009].

4. Optimization potential

This section identifies two different optimizatigotentials. The first are methodological/technical
shortcomings, e. g. where additional research &le@ in order to achieve required accuracies or
where additional technological developments areessary to meet temporal requirements. The
second optimization potential is identified in thhame of data coverage. This refers to situations,
where the methods are available, but not applieh@e areas and thus, the required data basé is no
available.
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Both optimization groups are selected separatelyoi@st and agricultural biomass assessments. For
both, forest and agricultural classes, there ihalenge and an optimization potential in terms of
producing the requested high resolution map (atadesof 1:100.000) at adequate costs and in an
acceptable time interval. In addition, the alreadgntioned transfer of terrestrial data in time and
space especially with respect to radiometric antbapheric corrections remains a general challenge
in all remote sensing applications.

4.1 Forest biomass

The key parameters to estimate forest biomass$dp-down approach are the following:
- forest area
- tree species (-mixture)
- tree density
- tree height

Except for the last parameter, all other parametdise available through the GMES core service
products for land (see GEOLAND 2 project: [GEOLANIZDO09]). Forest area will be available, the
main tree species (at least three classes: congemeciduous and mixed) and tree density are
foreseen parameters. Optimization potential cas bBeufound in

a) distinguishing more tree species types and,

b) deriving tree height as one of the most importapti variables.

The latter would be a product of main interestamdy for biomass potential assessments, but also fo
carbon related applications. In order to generate lieight, a DTM (digital terrain model) and a DSM
(digital surface model, i.e. the height of the garjoare needed. While there are several options to
generate a DSM: LIDAR, photogrammetry and intenfieetric SAR processing (INSAR); LIDAR is
the only option to derive a high quality digitatregn model (DTM) also beneath forest.

Thus, LIDAR is the best option to generate treglhigialthough at high costs. However, LIDAR data
is currently used for national or sub-national asseents of forest resources and biomass (digital
surface model DSM in combination with the DTM) inamy European countries. Thus existing
LiDAR data sets (both DTM and DSM) should be used.

For future updates, generally only the DSM hasdaaipdated, because the terrain (DTM) is in most
cases stable. Since LIiDAR acquisitions are expersnd time consuming, alternative systems might
be more suitable for the update of the DSM. Fohdusmogeneous DSM update of whole Europe,
satellite image photogrammetry would be a more econ alternative, which has to be further
developed to an operational use for such largeapphcation.

An operational INSAR DSM is currently also availdbr purchase from the company Intermap
Technologies Http://www.intermap.com/nextmap-digital-mapping-gram), but it is not clear, if
there are updates planned for this project.

4.2 Agricultural biomass

One main challenge with agricultural biomass is il and frequent change of crop types. This
change often happens annually or even two timesga y

In order to realize a high resolution crop type mgyite some time (often more than a year, if the
area is large) is needed for data processing. 8¥itte, the classification is done, it may happkat
situation has already changed. Thus, optimizataiergial can be found in operational capability and
processing speed of crop classifications at theired resolution.
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A second topic with optimization potential can Heritified in direct biomass assessment with SAR.
The methods should be made more easily understizngaibferable employing open source software
and accompanied by adequate training material.

Optimization from the legal framework point of viewan be found in changing the data

confidentiality rights. IACS data is generated gvgear, but it is not available at the original

resolution for further use such as for biomassi@kassessment. This makes duplication of efforts
necessary.

5. Summary & Outlook

In conclusion, a large variety of algorithms toirestte standing forest biomass from remote sensing
and NFI data are available. Among them, top-dowpr@gches are easier to implement and more
flexible for frequent updates. Tree height as anmiaformation parameter is still missing in large
areas and should thus be mapped preferable by Lio¥ABr frequent and more economic updates by
combining LIDAR DTM and satellite photogrammetrysied DSM.

For agricultural biomass, there are not so manyepa@available integrating remote sensing and
existing terrestrial data. Most studies use tetidstiata specifically generated for this purpose i
order to be temporally compatible with the rematasing imagery. The best operational example is
probably [Eerens et al., 2001] combining IACS datdellite imagery and yield models.
The next steps in CEUBIOM WP 4 will be
* the detailed analysis of national data sets aMailabthe countries (e.g. specific energy crops
— area and yield)
« the analysis of boundary conditions in order tdrgom the theoretical to a techno-ecological
or even an economic potential
« the definition of a harmonized approach taking irgocount the user requirements,
combination methods, available data and applyisgtaf boundary conditions.
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