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1. Introduction 
 
The aim of this report is to identify different options to combine terrestrial data with remote sensing 
imagery (satellite EO data).  
In this respect, terrestrial data means all data measured ‘in-situ’, i.e. not by remote sensing. This can 
be either statistics or ground truth data on biomass, land use/land cover information, etc with 
coordinates.  
However, before starting the review, the basic options for biomass measurement shall be briefly 
reviewed.  
 
According to [Herold et al., 2008], there are basically four options for biomass monitoring or 
measurement: 

• Destructive sampling (terrestrial) 
• Non-destructive sampling (terrestrial) 
• Remote sensing 
• Modelling 

For destructive sampling, the samples are harvested and the collected biomass is measured 
(weighted). Non-destructive sampling refers to terrestrial measurements on a sample basis without 
actually harvesting the biomass. The most common non-destructive sampling of biomass is regularly 
done in the frame of national forest inventories (NFIs).  
The third option covers the whole group of remote sensing technologies; the different methods have 
already been discussed in depth in Deliverable D 2.1 in work package 2. Finally, the use of models is 
another option to estimate biomass potential.  
 
In addition to these individual methods, different combinations are possible. This report is focused on 
the assessment of biomass potential from a combined use of terrestrial (mainly non-destructive 
sampling) and remote sensing data.  
A good basic overview of combining terrestrial and satellite data in general terms (not specifically for 
biomass) is given in [Jennings et al., 2010]. The authors identify the main problems in data integration 
such as varying definitions, different temporal resolution; incongruent data formats etc. and propose 
general recommendations to solve these problems.  
 
This report is focused on estimating two biomass types from terrestrial and EO data. The two types 
considered in CEUBIOM are ‘forest biomass’ and ‘agricultural biomass’. They are defined as 
follows: 

a) Forest biomass is equivalent to ‘woody biomass’ according to European Norm EN 14961-1 
b) Agricultural biomass is equivalent to ‘herbaceous biomass’ and ‘fruit biomass’ according to 

European Norm EN 14961-1. 
Within CEUBIOM, specific energy crops will be considered separately. They can fall under either of 
the above mentioned categories (e. g. short rotation forest is woody biomass; rape is herbaceous 
biomass). 
 
In this context, the term ‘potential’ is defined in congruence with the definition given in the partner 
project BEE.  
BEE defined the theoretical potential as: 
“the overall maximum amount of terrestrial biomass which can be considered theoretically available 
for bioenergy production within fundamental bio-physical limits”  
(from BEE deliverable D3.2).  
 
The ‘potentials’ calculated in the reviewed literature in Chapter 2 are almost exclusively theoretical 
potentials at a given point in time (time of the analysis) without considering projection into the future 
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and also without considering technical, sustainability, ecological or economical criteria. So mostly, 
the output of these studies is standing biomass. The criteria on how to come from the standing 
biomass to a realistic potential for bioenergy will be discussed in Chapters 3 and 4 and in more detail 
in Deliverable 4.3. 
 
Finally, it should be mentioned that the papers referred herewith represent only a selection, as such a 
review can never be complete.  
 
 

2. Method review for the combined use of EO and terrestrial data 
 
In Deliverable D2.1 of WP 2, the difference of direct and indirect biomass assessment from remote 
sensing is described. None of these methods can be applied relying exclusively on remote sensing 
data. To some extent ground truth data is always needed, e. g. for direct biomass estimation to build 
the regression curve.  
 
For direct biomass assessment, it does not matter whether it is a single or multiple linear regression, a 
partial least squares (PLS) regression or an artificial neural network (ANN) analysis. Ground truth 
(terrestrial) data is always necessary to build the relation between a remotely sensed signal and the 
actual biomass on the ground. Using an indirect approach, also terrestrial data is needed: first, training 
data for the classification of the land cover and second, biomass data for each of the land cover types.  
 
Studies comparing different combination techniques of EO and terrestrial data are of methodological 
interest. [Chen et al., 2009] report aboveground biomass (woodlands, shrub sites, grass/herbs sites) 
estimates along the Dempster Highway and around Yellowknife and the Lupin Gold Mine by using 
Landsat-7/ETM+ and JERS-1/SAR data. For the biomass estimation several analytical techniques 
such as simple, multiple or stepwise regressions, artificial neural networks and kNN have been used. 
The combination of JERS backscatter and Landsat TM4/TM5 in multiple regression analysis give the 
best biomass equation with r²=0.72 when using one-step approach (i.e. using all points) and 0.78 
when using a two-step approach (i.e. stratifying data into three classes). 
[Roy and Ravan, 1996] developed empirical regression models between satellite measured spectral 
response and biomass in Madhav National Park (India). [Baffetta et al., 2009] implemented a design-
based approach to k-nearest neighbours technique for coupling field and remotely sensed data. 
[McRoberts, 2009a] presented diagnostic tools for nearest neighbour techniques when used with 
satellite imagery.  
 
To summarize the comparing studies, there is no clear indication for one best method, however most 
authors consider kNN methods and multiple regression analysis as the most promising options. 
 
The terrestrial data used in remote sensing studies such as the ones mentioned above is generally 
acquired for the specific purpose or project. It has to fulfil several requirements which are for 
example: 

• Positional accuracy 
• Thematic congruence of classes with classes obtainable from remote sensing 
• Size of the observed area on the ground has to fit the resolution of the EO data 
• Acquisition times have to be coordinated, etc. 
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All these requirements make terrestrial data very costly. Much research efforts are thus invested in 
reducing the efforts for terrestrial data. Approaches include the investigation of options to  

• transfer terrestrial data from one time of analysis to another; 
• transfer terrestrial data to a different area (given similar conditions); 
• use indices rather than the image spectral values to reduce the sensitivity of the regression to 

e. g. atmospheric effects; 
• build libraries of terrestrial data for use in many different projects. 

 
For the CEUBIOM approach, obtaining large amounts of terrestrial data specifically for biomass 
potential assessment all over Europe is not viable. Therefore the focus is on using terrestrial data, 
which were collected anyway and/or for a different purpose. Such data for example can be all types 
of statistics, general landcover information, and national forest inventories (NFI), etc. The data has to 
be analysed and the satellite based classification procedures have to be adapted in an appropriate way 
as explained in [Jennings et al., 2010]. For example the class definitions have to be clear and 
transferable between terrestrial and satellite data and the used formats must allow data integration.  
In addition, also remote sensing data should be used, if already available, such as the GMES data sets 
‘image2000’, image2006’, core service products [GEOLAND2, 2009], CORINE land cover products, 
MARS products, etc. For the full list and details on existing remote sensing products see CEUBIOM 
Deliverable D2.3. 
 
A review of methods to combine these data sets with remote sensing is given in the following sub-
chapters. In addition to the method description, also the achievable accuracies, the size of the study 
area (local, regional, national, European, global) and possible restrictions are summarized. 
 
 

2.1 Methods for forest biomass potential assessment 
 
A large variety of methods is currently in use, amongst them two main groups can be distinguished. 
The difference between these two is the way how terrestrial data is available.  
 
For the first group, terrestrial data has to be available with spatially explicit location. This is for 
example true for NFI plot data, where each plot has a defined location and extent. Methods of this 
group generally try to set up a link between the terrestrial measurement and the pixel information in 
the EO data. These approaches are sometimes also called ‘bottom up approaches’. 
 
The second group involves all methods, which use terrestrial data on an aggregated basis or general 
equations, such as from national statistics. These terrestrial data have no more defined location, but 
are aggregated to a larger area. Examples would be statistics on the total amount of deciduous timber 
volume in a country or region or the growth and yield tables generated from forest inventories (e. g. 
for Austria [Hasenauer et al., 1994], [Eckmüllner et al., 2007]). In this case, other parameters such as 
forest age or density are derived from the EO data and then linked to ‘typical’ biomass values in this 
area and with the given parameters. Methods under this group are sometimes summarized under the 
term ‘top-down approaches’. In addition, below there are some interesting references given under 
‘other approaches’, which do not clearly fit into either one or the other above mentioned categories. 
 
One could also subdivide the approaches according to the amount of helping variables needed to 
reach the biomass calculation result. Direct methods (mainly based on LiDAR data) measure the 
height of the trees or stand directly and then estimate the biomass from existing equations. Indirect 
methods classify for example in a first step age classes and species from the remote sensing data. In 
the second step, this information is linked to average height and diameter at breast height (DBH) and 
finally in a third step biomass is estimated using the parameters gathered in the second step.  
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Bottom-up approaches for forest biomass 

 
The following papers are sorted in alphabetical order. 
[Barth et al., 2009] suggest a method for improving spatial consistency in the estimation of forest 
stand data. The first step of the method is a k-NN assignment. In the second step an optimization 
algorithm is applied in order to reach certain spatial variation targets. The method was tested in a case 
study where tree stem volume data were assigned to each pixel of forest stands, using satellite digital 
numbers as carrier data. The case study stands were constructed to be 64 hectares squares consisting 
of 1600 pixels (each 20x20m). The accuracy of the estimated stand level mean volume was used as a 
target in order to avoid drifts in mean volume during the optimization. The method was successful in 
three out of four stands. In the fourth case the mean stem volume was slightly overestimated (stem 
volume of 375 m³ ha rather than 336 m³ ha).  
 
[Bauerhansl, 2005] investigated the use of satellite imagery in the frame of the Austrian National 
Forest Inventory. 13 Landsat scenes and a digital terrain model were used and combined in a kNN 
approach. No accuracy values are given. 
 
[Blackard et al., 2008] generated a spatially distributed dataset of aboveground live forest biomass 
from ground measured inventory plots of the conterminous U.S., Alaska and Puerto Rico. The plot 
data are from the USDA Forest Inventory and Analysis (FIA) program. To scale these plot data to 
maps, they developed models relating field-measured response variables to plot attributes serving as 
the predictor variables. The plot attributes came from intersecting plot coordinates with geospatial 
datasets. First, they developed a forest mask by modeling forest vs. nonforest assignment of field plots 
as functions of the predictor layers using classification trees in „See5“. Then, forest biomass model 
were built within the predicted forest areas using tree-based algorithms in „Cubist“. The estimated 
proportion of correctly classified pixels for the forest mask ranged from 0.79 to 0.94. For biomass it 
ranged from a high of 0.73 to a low of 0.31.  
 
[Coulibaly et al., 2008] developed a method of aboveground forest biomass mapping from Ikonos 
high resolution satellite imagery and geospatial data. They assessed a geostatistical method (ordinary 
kriging) to map the biomass estimated with the neural networks approach trained with inventory plot 
biomass data. The study area, covering approximately 19720 hectares, is located in the North-West of 
New Brunswick (Canada). Reference biomass values by group of species (spruce, balsam fir, 
intolerant hardwood, tolerant hardwood and other conifers) were estimated using the equations of Ker 
(1980, 1984) and inventory data from permanent sample plots (PEP) of 400 m². The results have 
shown percentages of residual errors ranging between 2.6 and 9.8% (absolute value) and percentages 
of RMSE (root mean square error) ranging between 17.2 and 61.1%. 
 
[Gallaun et al., 2005] describes several methods for bottom-up approaches in the frame of the 
CarboInvent project. For the Austrian Alpine test area in Salzburg, a kNN method was applied to 
Landsat data. It was observed, as in previous studies on kNN that the RMSE is high for the 
comparison of small areas and decreases for larger regions. The RMSE of the volume of growing 
stock was between 30 and 60 %. 
 
[Gallaun et al., 2010] used an automatic up-scaling approach making use of satellite remote sensing 
data and field measurement data for EU-wide mapping of growing stock and above-ground biomass 
in forests. The validation at the regional level shows a high correlation between the classification 
results and the field based estimates with correlation coefficient r = 0.96 for coniferous, r = 0.94 for 
broadleaved and r = 0.97 for total growing stock per hectare. The mapped area is 5 million km2, of 
which 2 million km2 are forests, and covers the whole European Union, the EFTA countries, the 
Balkans, Belarus, the Ukraine, Moldova, Armenia, Azerbaijan, Georgia and Turkey. 
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[Gjertsen, 2007] developed a multi-source forest inventory (MSFI) method for use in the Norwegian 
National Forest Inventory (NFI). The study area is about 60 km x 50 km. The method is based on a k-
nearest neighbour rule and uses field plots from the NFI, land cover maps, and satellite image data 
from Landsat Thematic Mapper. The inventory method is used to produce maps of selected forest 
variables and to estimate the selected forest variables for large areas such as municipalities. In this 
study, focus has been on the qualitative variables ‘dominating species group’ and ‘development class’ 
because these variables are of central interest to forest managers. A mid-summer Landsat 5 TM scene 
was used as image data, and all NFI plots inside the scene were used as a reference dataset. The 
relationship between the spectral bands and the forest variables was analysed, and it was found that 
the levels of association were low. A leave-one-out method based on the reference dataset was used to 
estimate the pixel-level accuracies. They were found to be relatively low with 63 % agreement for 
species groups.  
 
[Koukal and Schneider, 2004] describe the use of Remote Sensing data for the inventory of high 
structured forests in mountainous regions in Austria (Tyrol and Lower Austria: 2 test side with 
114.600 ha and 97.600 ha). Input data are: Inventory data (permanent sampling grid with 11.000 
plots) and satellite image data (Landsat TM). The kNN-technique was used to combine the Landsat 
images with inventory data.  
 
[Magnussen et al., 2009] included model-based estimators of the uncertainty of pixel-level and areal 
k-nearest neighbour predictions of attribute Y from remotely-sensed ancillary data X. The two study 
areas are in Minnesota and in Finland (three separate contiguous forested areas of the size of 100 ha). 
Three forest inventory data sets with multivariate attributes of interest and co-located information on a 
suite of ancillary remotely-sensed attributes (from Landsat ETM+) were used. The RSME was in the 
range from 2.1 % to 3.7 %.  
 
[McRoberts, 2009b] proposed a two-step algorithm in which the class of a relevant categorical 
variable such as land cover is predicted in the first step, and continuous variables such as volume are 
predicted in the second step subject to the constraint that all nearest neighbours must come from the 
predicted class of the categorical variable. In the first step nearest neighbour multinomial logistic 
regression and discriminant analysis techniques were investigated and in the second step the kNN 
technique was used. For this study Landsat imagery were used for a study area in northern Minnesota 
(6 areas with 15x15 km). The accuracy is about 80%.  
 
[Rauste, 2005] used multi-temporal JERS SAR data to study forest biomass mapping. The study area 
is in South-eastern Finland. In single-date regression analysis between backscatter amplitude and stem 
volume, summer scenes from July to October produced correlation coefficients (r) between 0.63 and 
0.81. Multivariate regression analysis with 6-date JERS SAR dataset produced correlation coefficient 
of 0.85. A combined JERS –optical regression analysis improved the correlation coefficient to 0.89.  
 
[Tomppo et al., 2002] developed a multisource and multiresolution method for estimating large area 
tree stem volume of growing stock and aboveground biomass of trees. Combined Landsat-TM data 
and IRS-IC WiFS data, together with field data of NFI were applied. Landsat-TM data were used as 
an intermediate step between the field data and WiFS pixels. A nonparametric kNN estimation 
method was applied with Landsat-TM data and field plot data from the Swedish NFI. A nonlinear 
regression analysis was used in deriving models for volume and biomass as a function of WiFS data. 
The study area is located in the northern part of Sweden and has a size of 1.1 million hectare. The 
mean relative difference of biomass aggregated to municipality level is 3 % compared to the NFI data.  
 
[Tomppo et al., 2008] provide a review of how NFI (National Forest Inventories) field plot 
information has been used for parameterization of image data in Sweden and Finland, including pre-
processing steps and the optimization of the estimation variables. Therefore Landsat 5 TM or Landsat 
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7 ETM+ sensors have been used. As a substitute for Landsat images, multi-spectral SPOT or IRS-1 
images can also be used. For the combination of field data and satellite images the the k-NN 
algorithm was applied. Relative RMSE of 5% for mean volume and 12%, 15% and 16% for mean 
volumes of pine, spruce and birch were obtained in seven test units of 100 km².  
 
[Zheng et al., 2004] bridge the application of remote sensing techniques with various forest 
management practices in Chequamegon National Forest, Wisconsin by producing a high-resolution 
stand age map and a spatially explicit aboveground biomass map. Therefore they coupled AGB 
values, calculated from field measurements of tree DBH, with various vegetation indices derived from 
Landsat 7 ETM+ data through multiple regression analysis to produce an initial biomass map. This 
map was overlaid with a land-cover map to generate a stand age map. The final estimated AGB values 
compared reasonably with the independent field observations (R²=0.67).  
 
In order to summarize all above mentioned studies, the following table was created. It shows the 
method, type of EO data, the size of the study area (as an indicator for the operational capability of 
the method), achieved accuracy and the type of terrestrial data used. It can be observed that several 
variations of kNN estimators are most popular. Further the type of data belongs in most cases to the 
group of optical high resolution data (Landsat-type). The size of the study areas varies strongly, but it 
is clearly shown that lower resolution data is rather used for continental-wide applications ([Blackard 
et al., 2008], [Gallaun et al., 2010]), while HR data is mainly used for national or sub-national 
applications. VHR data is basically used for local applications, which was to be expected. Accuracies 
are very difficult to compare, because different statistical measures are used. Finally, in almost every 
case, national forest inventory (NFI) data was the source for the terrestrial data. 
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Table 1: Overview table of bottom-up approaches for forest biomass 
Reference Method Remote 

sensing data 
Approximate 
size of area 

Accuracy Type of 
terrestrial 
data 

[Barth et al., 
2009] 

kNN & top down 
correction 

Optical HR 
(5 – 30m) 

2,56 km² 75 % (3 of four 
correct) 

Forest plots 

[Bauerhansl, 
2005] 

kNN Optical HR 
(5 – 30m) 

Austria 
(84.0000 km²) 

NA NFI plots 

[Blackard 
et al., 2008] 

Modelling, See5 & 
Cubist 

Optical MR 
(30– 500 m) 

Continental 
U.S., Alaska & 
Puerto Rico 
(almost 
10.000.000 
km²) 

Correlation of 
0.31 - 0.73  

NFI plots 

[Coulibaly 
et al., 2008] 

Neural networks Optical VHR 
(< 5m) 

197,20 km² RMSE: 17.2 - 
61.1%. 

NFI plots 

[Gallaun 
et al., 2005] 

kNN Optical HR 
(5 – 30m) 

Province of 
Salzburg 
(7.154 km²) 

RMSE for 
volume of 
growing stock: 
30 - 60%. 

NFI plots 

[Gallaun 
et al., 2010] 

Clustering, fractional 
cover map 
calculation, 
classification with 
membership 
functions  

Optical MR 
(30– 500 m) 

5.000.000 km² R = 0.97 for 
total growing 
stock per 
hectare 

NFI plots 

[Gjertsen, 
2007] 

kNN Optical HR 
(5 – 30m) 

3.000 km² 63 % agreement 
for species 
groups 

NFI plots 

[Koukal and 
Schneider, 
2004] 

kNN Optical HR 
(5 – 30m) 

2.122 km² Total volume 
aggregated for 
the two test 
sites: +/-1% 

NFI plots 

[Magnussen 
et al., 2009] 

Modelling & kNN Optical HR 
(5 – 30m) 

3 km² RMSE: 2.1 % - 
3.7 %. 

NFI plots 

[McRoberts, 
2009b] 

NN multi-logistic 
regression and 
discriminant analysis 
& kNN 

Optical HR 
(5 – 30m) 

1.350 km² Ca. 80 % NFI plots 

[Rauste, 
2005]  
 

Multivariate 
regression analysis 

Optical and 
SAR HR 
data (5 – 
30m) 

1.444 km² Correlation of 
0.63 - 0.89 
(depending on 
input data) 

Stand-wise 
forest 
inventory map 

[Tomppo 
et al., 2002] 

Nonparametric kNN Optical HR 
(5 – 30m) 

11.000 km² Mean relative 
difference of 
biomass on 
municipality 
level: 3% 

NFI plots 

[Tomppo 
et al., 2008] 

kNN Optical HR 
(5 – 30m) 

Seven areas à 
100 km² 

RMSE of 5% 
for mean 
volume 

NFI plots 

[Zheng et al., 
2004] 

Multiple regression Optical HR 
(5 – 30m) 

ca. 280 km² R²=0.67 NFI plots 
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Top-down approaches for the estimation of forest biomass 

 
[González-Alonso et al., 2006] and [González-Alonso et al., 2005] show three possible uses of 
satellite data of various sources and resolutions in the generation of forest biomass cartography. The 
first one attempts to find statistical relationships between satellite-derived NDVI time series and field 
measurements from the Spanish National Forest Inventory on a province basis (accuracy: 82-95%). 
The second one is focused on updating and scaling-up such a relationship using Envisat-MERIS Full 
Resolution data (accuracy: max. 58%). The third one tries to produce medium resolution biomass 
maps using information derived from the Envisat-MERIS-FR sensor in combination with finer 
satellite data from SPOT5-HRG (accuracy: 61%), field data from the Spanish NFIs and forest 
cartography (accuracy: 94-96%). The study area is the whole Spanish territory. For the combination 
of satellite data with inventory data they used regression models.  
 
An experiment was performed by [Santos et al., 2004] in the Brazilian Amazon (Tapajós National 
Forest and surroundings) to provide airborne SAR data at X- and P- bands over tropical rainforest. 

The best biomass model was established after comprehensive testing of a range of specific allometric 
equations to achieve statistically high precision in biomass prediction. A final mapping result displays 
forest biomass, and accounts for different succession stages and primary forest in intervals. The 
coefficient of determination for tree height as the most important variable to the biomass calculation 
attained a value of R² = 0.87 on the regression analysis.  
 
In this study [Quinones and Hoekman, 2002] created biomass maps of two study sites at the 
Colombian Amazon by using results from polarimetric classification algorithm that combines power, 
phase and correlation of C, L and P band of AirSAR data. Therefore two different approaches 
(bottom-up vs. top-down) were used. For one site (dry and flat) the biomass classes selected are 
related to Land Cover types and an empirical relationship between biomass and the average 
backscatter is used to create the biomass map (r² is 0.94). For the other site (hilly and flooded) a 
biomass map is created by reclassifying a biophysical forest structural map with biomass values 
obtained from field available data (overall accuracy for the biomass map: 92%).  
 
In the project CARBO-INVENT (e.g. [Galinski, 2005]), two different top-down approaches to 
estimate carbon stock changes were employed: 1) by using aggregated data from two different NFIs 
and 2) by using aggregated data from one NFI and in addition the help of the European forest 
information scenario model (EFISCEN). The CARBO-INVENT analyses were carried out for 
Finland, Sweden, Germany, Austria, Ireland and Spain.  
The basic input data in both cases is derived from the national forest inventory/ies (aggregated NFI 
data). This includes forest area, growing stock and increment by age-class and forest type. Most 
biomass functions, however, use diameter at breast height (DBH) and/or tree height as explaining 
variables to generate in the first step stem volume. Growth and yield tables were used to get values for 
DBH and tree height by age class. Biomass Expansion Factors (BEFs) are used to expand from stem 
volume to whole tree biomass and to carbon contents. Carbon stock changes are calculated in case 1 
by simple subtraction (stock 1 – stock 2), while in case 2, stock 2 is defined as stock 1 + gross 
increment – harvesting – mortality (from EFISCEN).  
Within CARBO-INVENT, a comparison of this top-down to the bottom-up approach described 
[Gallaun et al., 2005] was performed. This comparison revealed that the deviation between the two 
approaches was highest for the youngest age classes. The bottom-up method resulted in lower 
uncertainties in the results (of carbon stock and stock changes), but with the drawback of depending 
on detailed (plot-level) forest inventory data. In contrast, the top-down approach is much more cost-
efficient. It was observed, that modelling is sensitive to the accuracy of the available harvest and 
increment estimates. 
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[Dorfinger and Bachhiesl, 2008] calculated the biomass potential from forestry for the province of 
Salzburg based on a satellite image classification of forest classes (based on SPOT imagery) and yield 
tables. In addition, they compared the results with average energy demand from households and 
industries.  
 
In the GSE-FM project, the product 'National and Regional Volume, Biomass and Carbon 
Statistics'(Code: GSE-FM-VBCS) is a product designed for central Europe to obtain the information 
required for UNFCCC- and Kyoto reporting in the sector of LULUCF. The products include volume, 
biomass and carbon stock estimates in table format according to FCCC and Kyoto reporting 
requirements. These estimates are  

1) Area change of the classes forest land, cropland, grassland, wetland, settlements, other land 
2) Forest area (with a higher accuracy than 1) 
3) Change of stem volume 
4) Change of woody biomass 
5) Change of carbon stock 

The methods are partly top-down and partly bottom-up approaches, all details can be found in [GSE-
FM, 2010].  
 

Other combination approaches for forest biomass 

 
The following three papers are mainly using tree or stand height from remote sensing (LiDAR or 
stereo) in combination with allometric models to estimate biomass, while the other approaches are 
either based on models or use a different method or method combination. 
 
[Simard et al., 2008] describe a new systematic methodology to measure mangrove height and 
aboveground biomass by remote sensing. The method is based on SRTM (Shuttle Radar Topography 
Mission) elevation data, ICEsat/ GLAS waveforms (Ice, Cloud, and Land Elevation 
Satellite/Geoscience Laser Altimeter System) and field data. The study area is Colombia with an 
extension of 1280 km². They compared height estimation methods based on waveform centroids and 
the canopy height profile (CHP). Linear relationships between ICEsat height estimates and SRTM 
elevation were derived. So they found the centroid of the canopy waveform contribution (CWC) to be 
the best height estimator. The field data was used to estimate a SRTM canopy height bias (−1.3m) and 
estimation error (RMS = 1.9m). The relationship was applied to the SRTM elevation data to produce 
a mangrove canopy height map.  
 
[Koch et al., 2009] describe enhanced processes to delineate stand or sub-stand units and to extract 
different forest information based only on airborne LIDAR data. For the stand delineation an 
automatic process was developed which provides a stand or sub-stand unit delineation. With a 
combined method the stand boundaries as they are established by the mapping units today, as well as 
sub-stand units which have in common physical characteristics indicating the same management 
disposition, were assessed. Finally a first validation of the forest stand unit delineation is provided. 
The process was tested in two different test sites. One in a sub-mountainous area in Rheinland-Pfalz 
(4 km²) and the other is a mountainous forest in Baden-Württemberg (9 km²), both with a mixture of 
conifers and broadleaf forests. The correlation coefficient between LIDAR measurements and field 
inventory averages 78.2 for coniferous trees, 81.6 for deciduous trees and 84.1 for the top height per 
sample plot.  
 
[St-Onge et al., 2008] assess the accuracy of the forest height and biomass estimates derived from an 
Ikonos stereo pair and a lidar digital terrain model (DTM). The coefficient of determination reached 
0.91 and 0.79 for average height and biomass, respectively. In both cases, the accuracy of the Ikonos-
lidar canopy height model (CHM) predictions was slightly lower than that of the all-lidar reference 
CHM.  
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In [Chopping et al., 2008] a rapid canopy reflectance model inversion experiment was performed 
using multi-angle reflectance data from NASA Multi-angle Imaging Spectro-Radiometer on the Earth 
Observing System Terra satellite. The goal was to obtain measures of forest fractional crown cover, 
mean canopy height, and aboveground woody biomass for large parts of south-eastern Arizona and 
southern New Mexico (>200.000 km²). The results showed good matches with maps from the USDA 
Forest Service, with R² values of 0.78, 0.69 and 0.81 and absolute mean errors of 0.1 - 2.2 m.  
 
In response to an announcement of the German Aerospace Center (DLR) for a national Earth 
observation mission, the Friedrich-Schiller University Jena and the JenaOptronik GmbH proposed the 
EO-mission CARBON-3D. The data products of this multi sensor mission will for the first time 
accurately estimate above-ground biomass, one of the most important parameters of the carbon cycle. 
This mission will simultaneous acquire data with a multi-angle optical instrument and with NASAs 
Lidar system VCL (Vegetation Canopy Lidar). The second instrument onboard Carbon-3D is a 
BRDF-imager that extrapolates the laser-retrieved height profiles to biophysical vegetation maps 
using the horizontal, spectral information as well as multidirectional information. The aim of this 
mission is to reduce uncertainties about net effects of deforestation and forest re-growth on 
atmospheric CO2 concentrations. [Hese et al., 2004] 
 
[Haapanen and Tuominen, 2008] evaluated the potential of the combination of Landsat ETM+ 
multispectral data and aerial photograph spectral and textural features for forest variable estimation. 
The studied stand variables were mean height, basal area per hectare, and the volume of the growing 
stock. Several approaches were tested when combining the image data sources: feature selection, 
feature weighting, satellite image-based stratification, and combination of individual estimates by 
weighting. The highest accuracies were obtained when both data sources were used. There were 
several good ways to combine the data sources. Feature selection with generic algorithm and 
subsequent feature weighting gave the lowest mean volume RMSE (63.7 m³/ha, 65.3 percent of the 
mean).  
 
[Hu et al., 1996] used an approach to estimating biomass by integrating satellite data and carbon 
dynamics model. Anural actual net primary productivity (NPP) is first estimated with monthly 
composite 1-degre AVHRR Normalized Difference Vegetation Index (NDVI) data using the 
production efficiency approach in which canopy absorbed photo synthetically active radiation is 
transformed into net primary productivity. NPP estimates are subsequently incorporated into primary 
production is considered. NPP estimates are subsequently incorporated into a carbon dynamics model, 
PHYTOMASS model, to simulate biomass accumulation over succession until equilibrium with 
climate. A global map to terrestrial biomass is finally generated based on the estimation results after 
their validation with field measurements. The biomass estimates are validated with 98 sites of field 
measurements with a correlation coefficient of 0.44.  
 
[Thenkabail et al., 2004] developed biomass models to calculate carbon stock levels of the West 
African oil palms using multi-date wet and dry season IKONOS images. Four IKONOS images, each 
of about 13 500 ha were selected for the two representative areas. Allometric equations related 
aboveground palm biomass to their stem heights. Empirical regression models based on field plot data 
were established to determine wet and dry biomass of oil palm plantations in IKONOS images. The 
best explained between 63 and 72% of the variability in the data. Model evaluations with independent 
datasets showed there is 28-36% uncertainty in dry biomass predictions. The best results had an 
overall accuracy of 74.5% using all four IKONOS bands.  
 
The FAO Forest Resources Assessments in 2000 and 2005 ([FAO, 2001], [FAO, 2006]) collected 
and summarized 229 national reports on forest, including forest biomass. A special working paper 
[Garzuglia and Saket, 2003] on woody biomass based on the FRA 2000 data states that national 
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reports from the individual countries are not prepared in a harmonized way. Three levels of reliability 
of the data are defined: 
1 – high: computed from NFI data based on field sampling complemented by thematic mapping 
2 – medium: mainly based on remote sensing 
3 – low: based on secondary sources, general assessments, statistics and expert estimates. 
The procedures for the calculation of volume and biomass in tropical areas are adopted from [Brown, 
1997]. For industrialized temperate-boreal countries, the technical specifications of [A. Bombelli, 
2009] are followed. 
In addition to the new ‘standard’ Forest Resources Assessment 2010 (FRA2010), a remote sensing 
survey (RSS) is currently carried out in the frame of FRA2010. The two main components of this RSS 
are: 

1. Generating a new, validated global tree cover map using time-series imagery from MODIS 
satellites at 250 m resolution. 

2. Gathering and analysing the best existing global imagery (Landsat images at 30 m resolution) 
from 1975, 1990, 2000 and 2005 for improved estimates of forest area and forest area change. 
This is done on the basis of a regular sampling grid (a sample every one by one degree 
longitude/latitude). 

 
 

2.2 Methods for agricultural biomass potential assessment 
 
Quite some references have been already given in the Deliverable D2.2 on SAR data. Most of these 
studies are using specifically derived terrestrial data as for example [Karnchanasutham et al., 1995], 
who evaluated the capabilities of BRS-l SAR data for monitoring of rice planting acreage and its 
growth reaching an accuracy for the rice mapping of 78% and the overall accuracy of 79%. Another 
work by [McNairn et al., 2000] postulated that the multi-polarized configuration of RADARSAT-2 is 
likely to provide more information related to crop structure and crop condition than previously 
available sensors to address the sensitivity of multi-polarized SAR data to characteristics of corn, 
wheat and soybean crops. The HH-HV-LL 3-polarization combination had the highest Kappa 
coefficient (0.92).  
 
Aside from these very specific studies, there is a large variety of studies on crop type classification, 
where only a selection can be cited below. Although crop type is not the required information, it can 
be seen as a first step towards biomass assessment. In the second sub-chapter, combined approaches 
to estimate biomass are reviewed. 
 

Crop type classification (first step towards biomass estimation) 

 
Studies in this section do not assess biomass, but only the crop types as their final mapping result. 
Therefore, these studies provide only the first step in an indirect approach, which would then need a 
second calculation of biomass per crop type. The following papers are only a small extract from the 
large amount of studies in this field. 
 
[Feingersh et al., 2001] tested the use of radar and optical imagery and their synergy for crop 
mapping, with dependence on the sequence of pre-processing and processing techniques in the 
mapping procedure. Classification accuracy of crop maps based on synthetic aperture radar (SAR), 
visible-infrared (VIR) and fused imagery reached 82%, 92% and 76% respectively. Majority based 
object classification does not improve significantly the overall accuracy.  
 
[Wardlow and Egbert, 2008] evaluated the applicability of time-series MODIS 250 m normalized 
difference vegetation index (NDVI) data for large-area crop-related LU/LC mapping over the U.S. 
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Central Great Plains. A hierarchical crop mapping protocol, which applied a decision tree classifier to 
multi-temporal NDVI data collected over the growing season, was tested. The hierarchical 
classification approach produced a series of four crop-related LULC maps that progressively 
classified: 1) crop/non-crop, 2) general crop types (alfalfa, summer crops, winter wheat, and fallow), 
3) specific summer crop types (corn, sorghum, and soybeans), and 4) irrigated/non-irrigated crops. 
The series of MODIS NDVI-derived crop maps generally had classification accuracies greater than 
80%. Overall accuracies ranged from 94% for the general crop map to 84% for the summer crop map. 
 
A crop map of the Netherlands was created using a methodology that integrates multi-temporal and 
multi-sensor satellite imagery (Landsat TM, IRS-LISS3, ERS2-SAR), statistical data on crop area and 
parcel boundaries from a 1:10 000 digital topographic map [DeWit and Clevers, 2004]. In the first 
phase a crop field database was created by extracting static parcel boundaries from the digital 
topographic map and by adding dynamic crop boundaries using on-screen digitizing. In the next phase 
the crop type was determined from the spectral and phenological properties of each field. The 
resulting crop map has accuracy larger than 80% for most individual crops and an overall accuracy of 
90%.  
 
The purpose of this project by [Cook et al., 1996] was to establish a crop specific classification for a 
group of counties in Southeastern North Dakota. Landsat TM data (from May, June, July, and 
September 1994) provided 24 bands of multi spectral information (the thermal bands were not used). 
Extending this crop classification throughout North Dakota using AVHRR data and developing 
relationships to spring wheat yield are the focus of the North Dakota spring what yield modeling 
project. Crop information came from both the National Agricultural Statistics Service (NASS) June 
Agricultural Survey (JAS) and the Farm Services Agency (FSA) for the 1994 growing season. 
ERDAS IMAGINE2 software was used in the clustering and classification of the four dates of 
Landsat TM imagery. Mapping accuracy is around 85%.  
 
[González-Alonso and Cuevas, 1997] used regression estimators for crop area estimation. They found 
out that regression estimators are less prone to errors compared to other methods when using 
terrestrial data from another year than the satellite imagery. This however is only true if the 
magnitude of change between the year of satellite data acquisition and ground survey is not too large. 
 
A simple combination approach of terrestrial and EO data is disaggregation of statistical data. This 
means, if terrestrial data (statistics) are available only on an aggregated level (e.g. for communities or 
at a low spatial resolution), remote sensing based classifications can be used to disaggregate the 
information to more spatial detail. This is for example true for IACS data, which is in Austria only 
available for 100 by 100 m squares due to data confidentiality issues.  
 
 

Agricultural biomass estimation 

 
The MARS project has already been described in the frame of Deliverable D2.3. [Gallego, 1999] 
explains two different activities of the MARS project in crop area estimation: 

1. The regional crop inventories, that combine high resolution satellite images and ground surveys 
in a classical statistical scheme based on area frame sampling and ground visits providing 
the main estimation variable. 

2. The rapid estimates of crop area change at the EU level based on a more flexible expert 
procedure combining general information and satellite images on a fixed panel of sites. 

The methods were tested on five pilot regions of approximately 20.000 km² each. The accuracy for 
various crops in the pilot regions was between 49% and 66%.  
For yield forecasting, agro-meteorological models (Crop Growth Monitoring System - CGMS) and 
low resolution remote sensing methods are used in combination with the crop area estimation. The 
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description of the methodology (including use of meteorological data, agro-meteorological 
processing, use of remote sensing data and statistical data analysis and result validation) is accessible 
on the website (see http://www.marsop.info).  
 
[Hu et al., 1996] describes a promising approach to estimating biomass by integrating satellite data 
and carbon dynamics model. Annual actual net primary productivity (NPP) is first estimated with 
monthly composite 1-degre AVHRR Normalized Difference Vegetation Index (NDIV) data using the 
production efficiency approach, in which conversion efficiency of canopy absorbed 
photosynthetically active radiation into primary production is considered. NPP estimates are 
subsequently incorporated into a carbon dynamics model, PHYTOMASS model, to simulate biomass 
accumulation over succession until equilibrium with climate. A global map to terrestrial biomass of 
1989 is finally generated based on the estimation results after their validation with field 
measurements. The NPP estimates are validated with only 14 sites of field measurement available; the 
correlation coefficient is 0.65. The biomass estimates are validated with 98 sites of field 
measurements; the correction coefficient is 0.44.  
 
The aim of a study by [Butterfield and Malmström, 2009] is to examine the influence of phenological 
changes on NDVI-biomass relationships in annual grasses to improve the capacity to evaluate 
grassland dynamics over time. Also relationships between biomass and fAPAR and between biomass 
and LAI were analysed. To do this, they planted stands of three annual grass species in an agricultural 
field on the Michigan State University campus in 2003. Accuracy between R²=0.73 and R²=0.82.  
 
[Yamamoto et al., 2008] estimated biomass using field measurement data and NOAA AVHRR LAC 
satellite data, and evaluated the estimated biomass using meteorological station data. The NDVI was 
calculated from convolved reflectance to NOAA AVHRR spectral resolution. As the result, they 
found that it is possible to estimate vegetation biomass without influence of clouds and vegetation 
growth with more than 5 days composite of NOAA AVHRR LAC data. Biomass in the wide area 
could be estimated with less than 10% error.  
 
[Chen et al., 2009], already described in the introductory part of chapter 2, used biomass 
measurements of grass (including herbs, lichen and moss) as well as shrubs and correlated them in a 
bottom-up approach to the remote sensing signals from Landsat TM and JERS data. The results 
indicate that a transfer of the developed regression model from one site to another is possible without 
large errors.  
 
[DiBella et al., 2003] combined SPOT VEGETATION medium resolution optical data with the 
STICS prairie simulation model to improve model predictions and evaluation. Thus, in this case, 
satellite imagery was used as a kind of ‘ground truth’ compared to the simulation model.  
 
[Eerens et al., 2001] used medium-resolution NOAA-AVHRR or also SPOT VEGETATION in 
combination with the terrestrial IACS data to improve the biomass (dry matter) predictions. The main 
processing steps are: (1) filtering of the multitemporal image data; (2) spectral unmixing of the coarse 
satellite pixels to the IACS segments; (3) estimation of dry matter production by using solar radiation 
and temperature; (4) calculation of the cumulative values to reach a quantifyable amount of harvest 
material; (5) differencing to assess zones of progressed or retarded growth compared t previous years; 
(6) regionalization including data reduction and finally (7) calibration and integration with the official 
yield statistics. 
 
The CROPMON project [Suba et al., 2009] was established to support the mapping of different crop 
types (winter wheat, winter and spring barley, maize, sugar beet, sunflower, alfalfa and maize to 
ensilage) in the activity area and for yield forecasting covering large areas. In the operational phase 
partially the subsidies system was based on the estimation. 
Methodology 
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1. Experimental Applications Validations in the Agriculture (1980-1996) 

• the development of the baseline crop area mapping and area assessment methods plus the 
yield models’ creation and experiments based on statistics (1980-90) and, 

• the final accomplishment of the methodology to prepare and validate them for operational use 
(1993-96) 

2. Operational phase (1997-2003) 
 

• information collection on the area of the major crops 
• accompanied by problems areas delineation focusing to drought assessment plus the provision 

of reliable yield forecast and final yield estimates 
 
The method comprises frequent time (NOAA AVHRR) and accurate spatial (Landsat TM, IRS-1C/D, 
SPOT) sampling. The model calculated vegetation indexes (NDVI, MGVI) to analyze the spatial 
distribution and strength of the drought in the actual year. Waterlog and flood mapping and its effects 
for crop development also helped the forecast method. Quality checks are done by farms ground data 
analyses and the use of empirical confusion matrices. 
 
 

3. Usability for the harmonized approach 
 

From the review of forest biomass studies, several conclusions can be drawn: 
1) bottom-up approaches are generally more accurate than top-down ones 
2) the co-location of NFI plots and remote sensing data and dealing with related uncertainties are 

not trivial in bottom-up approaches 
3) a good predefined stratification improves the results  
4) generally tree height information leads to more accurate biomass estimates 
5) NFI data (either plot-level or allometric equations) is the most commonly used terrestrial data 

source 
 
From the review of agricultural biomass studies, the outcome is: 

1) direct biomass measurement using SAR technology is a straightforward approach at the cost 
of high complexity  

2) crop area estimation and also yield are often supported by modelling 
3) existing terrestrial data (from statistics) are rarely taken into account  
4) achievable accuracy and spatial detail are reversely correlated: for low resolution data with 

spatial resolutions with more than 100 m the errors are small, while for detailed mapping the 
errors are much higher 

5) meteorological data and models play a significant role for short-term forecasting 
 
Generally it has to be mentioned that not necessarily only one approach can be used, but it is also 
possible to define a set of valuable approaches with clearly specified terms and conditions, which can 
be used. Such an approach is for example also followed in the post-Kyoto carbon reporting system, 
where three different ‘TIER’ levels are defined and the countries can decide according to their 
situation and data availability which TIER level to choose. 

3.1 Considerations regarding the user requirements 
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In comparison with the user requirements (D 4.1), there are some topics, where methods and 
requirements fit very well. On the other hand, there are also some significant discrepancies. To 
recapitulate, the main requirements from D 4.1 are: 

a) Generate one basic potential with well defined boundary conditions (restrictions) applicable 
for many users. This basic potential can be further used for individual potential assessments 
for specific user needs, but not be done in the frame of the harmonized approach. 

b) Full update every 3 - 6 years, whenever spatial data, e.g. core service products, are 
available. In addition, a statistical update of the economical potential (maybe only for 
agricultural biomass) can be done annually. 

c) Existing data should be used in order to keep costs as low as possible 
d) The resulting potential should be suitable for different purposes, especially for internal 

information, policy and planning, dissemination, reporting and maybe (lower priority) also 
for subsidies and subsidy control. Potentials with very specific boundary conditions only 
important to or available in one country or region cannot be considered. 

e) The resulting accuracy should be in the range of 80 – 85 % and the errors should be 
transparently documented and traceable wherever possible. 

f) It can be recommended to at least generate the three main thematic classes ‘forest biomass’, 
‘agricultural biomass’, ‘other biomass’. Further differentiation should be done based on 
accuracy, time and cost considerations as well as based on the existence of data (e.g. if from 
core services already hardwood/ softwood and crops/ permanent crops/ grassland is 
available). 

g) The product should be a continuous GIS map with a scale of 1:75.000 – 1:100.000. Vector 
data on NUTS levels can be generated on this base in addition. 

h) The method should be of intermediate complexity and be accompanied by training. The 
processing time (without EO data pre-processing) should be around 6 – 9 months. 

 
Regarding requirements a) and d), there is no objection from the methods point of view. The most 
important issue will be the availability of boundary conditions information. This topic will be 
discussed in Deliverable D 4.3.  
 
Regarding temporal resolution (requirement b), there is a main drawback, if we want to consider a 
bottom-up approach for forest biomass. Such an approach would require NFI plot data available and 
accessible every 3 – 6 years. This is not possible, since most NFIs are done in 10-years intervals and 
thus, no information would be available in between. This leads to the recommendation to rather use 
top-down approaches than bottom-up ones or eventually to a combination of the two in an alternating 
way. For agricultural biomass estimation, there is quite clear need for a stronger integration of 
existing statistics, which are to a large extent available on an annual basis. The crop area estimation 
does not have to be updated so frequently and thus allowing the usage of core service data.  
 
Regarding costs (requirement c); there is a mayor contradiction with the requirement e), especially 
regarding tree height as an important parameter for forest biomass estimation. Tree height is rather 
expensive to obtain, but it improves the resulting accuracy significantly. Thus, here is a major 
optimization potential (see chapter 4). For agricultural biomass, there is not much contradiction from 
the cost point-of-view, if existing data is properly used. In general, not only for terrestrial data, 
existing data sets should be employed, but the same is true for remote sensing data and products. 
Thus, existing imagery such as the ‘image2000’ and ‘image2006’ data sets of GMES should be used, 
if methods require the basic imagery. In case of approaches building on land cover products, core 
service products from GEOLAND 2, CORINE land cover and similar initiatives are data sources to be 
exploited in order to keep the costs low. 
 
Regarding accuracy (e), in forestry, the use of LiDAR or stereoscopical methods to derive tree height 
is recommended to achieve the needed accuracy. For agricultural biomass, accuracy is rather difficult 
to assess, however, the large amount of production statistics are largely accepted and thus should be 
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used. If projections in the future are needed, the accuracy requirement is very difficult to fulfil. Thus, 
long term projections should be avoided if the accuracy requirement should be satisfied. 
 
Regarding requirement f (thematic detail), in the forest domain hardwood and softwood can be 
differentiated; this is done on a regular basis (also in the core service products, [GEOLAND2, 2009]) 
and is also necessary to reach the needed accuracy. For agricultural biomass the main crops should be 
treated separately, which is done both in the production statistics and also to a certain degree in the 
land cover classifications. However, there is one large discrepancy in this: if the crop areas are 
updated only every 3 -5 years, but crop types change annually (or even two times a year), this is a 
critical deviation. 
 
The scale (requirement g) poses a challenge, since up-to-now, most continent-wide assessments are 
based on medium resolution data with spatial resolution around 250 – 500m, which would result in a 
scale of 1:1.000.000. In order to achieve a scale of 1:100.000, HR data would be necessary, which is 
currently mostly used in national or regional assessments. However, the products of geoland2 
[GEOLAND2, 2009] are also in this scale, thus it should be feasible to calculate also biomass based 
on the GEOLAND core service products.  
 
Regarding requirement h, there is again a contradiction with requirement e), because often, more 
simple methods lead to less accurate results. However, it is important to mention that the robustness 
of methods should be given a higher priority than the complexity of methods. Although many users 
wanted to implement the assessments themselves, there always is the option of outsourcing part of the 
work. Regarding complexity in case of equal robustness however, for forest, it is easier to implement 
a top-down assessment than a highly complex bottom-up kNN analysis. Regarding agricultural 
biomass, indirect assessments based on optical data are easier to implement than direct assessment 
based on SAR data and thus should be preferred. 
 

3.2 From theoretical to technical/ecological/economic potential 
 
As already mentioned, most of the techniques reviewed so far consider the theoretical potential, which 
is the base for further calculations. In order to calculate the technical, ecological or economic 
potential, several restrictions, often also termed as boundary conditions, are necessary. Some widely 
accepted general boundary conditions are listed below: 

1) utilization of forest biomass for energy cannot interfere with use of forest fibre for industry 
2) utilization of agricultural biomass for energy cannot interfere with use of agricultural products 

for food or livestock feeding 
3) land in protection areas cannot (unrestrictedly) be used for biomass production 
4) usage has to be sustainable, e.g. in a well managed forest, only the increment of forest 

biomass can be harvested. 
Some studies with respect to boundary conditions are mentioned below, however, this topic and the 
final definitions regarding the boundary conditions in CEUBIOM will be part of Deliverable D 4.3.  
 
[Asikainen et al., 2008] calculated the biomass potential from forest in the EU-27 using technical and 
economic boundary conditions. For technical consideration, the percentage of mountain area of each 
country was used. For economic considerations, hourly labour costs, hourly costs for harvesting 
machinery and different price scenarios for transport of wood material were used for eight out of the 
27 countries. All calculations were done on a country by country basis. 
 
In the RENEW project [Seyfried, 2008], different boundary conditions for forest and agricultural 
biomass potential assessment for fuel were set in a straightforward manner. Regarding forest biomass, 
the increment and thinning potential was used and then reduced by the amount of biomass needed for 
industry (fibre). In the agricultural biomass domain, the amount of cereal straw, oilseed straw and 
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maize straw were estimated and reduced by the amounts needed for animal feed or bedding and other 
fibre needs.  
 
The European Environment Agency (EEA) published a report on: ‘How much bioenergy can Europe 
produce without harming the environment?’ [European Environment Agency - EEA, 2006]. In their 
prediction for 2030, they define the following key environmental (ecological) constraints (which are 
mainly considering agricultural land):  

1) The present share of 'environmentally orientated' farming would need to increase to about 30 
% of the Utilised Agricultural Area (UAA) in most Member States, except for densely 
populated countries such as Belgium, Netherlands, Luxembourg and Malta where the 
agricultural land per head ratio is very small. In these countries, the necessary share was set 
at 20 % of UAA by 2030.  

2) At least 3 % of currently intensively used farmland should be made available by 2030 for 
nature conservation purposes in order to re-create ecological 'stepping stones' to increase the 
survival and/or re-establishment of farmland species in these areas. 

3) If in future extensive land use categories such as permanent grassland, olive groves and 
dehesas/montados are released from agriculture, and therefore become potentially available 
for biomass production, these should not be ploughed for targeted biomass crops. Instead 
they should be maintained under their current land cover and ecological structure, while 
biomass from grass cutting or tree pruning could be harvested for bioenergy production.  

4) Biomass crops chosen for future bioenergy production should be selected carefully with 
respect to both their environmental pressures and their potential to positively influence the 
landscape and biodiversity quality of an area. The criteria for prioritising these crops on the 
basis of their environmental performance should involve effects on water, soil and farmland 
biodiversity. 

 
Another EEA publication from 2007 is focussing on the environmentally compatible biomass for bio-
energy from European forests [European Environment Agency - EEA, 2007]. They considered 
protected areas, biodiversity, soil erosion and –compaction, site fertility and nitrogen inputs as 
parameters for boundary conditions in terms of sustainable and environmentally compatible potential. 
In addition, also an economic model was applied assuming a fixed price for wood chips and varying 
costs for extracting wood residues from the forest. More details on the model and model structure are 
given in [Kallio et al., 2004].  
 
The Austrian Research and Training Centre for Forests, Natural Hazards and Landscape (BFW) 
carried out a study assessing the forest biomass in Austria commissioned by the Austrian Ministry of 
Agriculture and Forestry; see [Forschungszentrum Wald - BFW, 2008] and [Forschungszentrum Wald 
- BFW, 2009]. In this study, different aspects such as sustainability and biodiversity, economic 
developments (five different scenarios) and four different silvicultural treatment scenarios were used 
to model the biomass until the year 2020. For more details on the different economic scenarios see 
[Gschwantner, 2009] and for the silvicultural treatments and their respective restrictions see 
[Ledermann and Neumann, 2009].  
 

4. Optimization potential 
 
This section identifies two different optimization potentials. The first are methodological/technical 
shortcomings, e. g. where additional research is needed in order to achieve required accuracies or 
where additional technological developments are necessary to meet temporal requirements. The 
second optimization potential is identified in the frame of data coverage. This refers to situations, 
where the methods are available, but not applied on large areas and thus, the required data base is not 
available.  
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Both optimization groups are selected separately for forest and agricultural biomass assessments. For 
both, forest and agricultural classes, there is a challenge and an optimization potential in terms of 
producing the requested high resolution map (at a scale of 1:100.000) at adequate costs and in an 
acceptable time interval. In addition, the already mentioned transfer of terrestrial data in time and 
space especially with respect to radiometric and atmospheric corrections remains a general challenge 
in all remote sensing applications. 
 

4.1  Forest biomass 
 
The key parameters to estimate forest biomass in a top-down approach are the following: 

- forest area 
- tree species (-mixture) 
- tree density 
- tree height 

 
Except for the last parameter, all other parameters will be available through the GMES core service 
products for land (see GEOLAND 2 project: [GEOLAND2, 2009]). Forest area will be available, the 
main tree species (at least three classes: coniferous, deciduous and mixed) and tree density are 
foreseen parameters. Optimization potential can thus be found in  

a) distinguishing more tree species types and,  
b) deriving tree height as one of the most important input variables.  

 
The latter would be a product of main interest not only for biomass potential assessments, but also for 
carbon related applications. In order to generate tree height, a DTM (digital terrain model) and a DSM 
(digital surface model, i.e. the height of the canopy) are needed. While there are several options to 
generate a DSM: LiDAR, photogrammetry and interferometric SAR processing (InSAR); LiDAR is 
the only option to derive a high quality digital terrain model (DTM) also beneath forest.  
 
Thus, LiDAR is the best option to generate tree height, although at high costs. However, LiDAR data 
is currently used for national or sub-national assessments of forest resources and biomass (digital 
surface model DSM in combination with the DTM) in many European countries. Thus existing 
LiDAR data sets (both DTM and DSM) should be used.  
 
For future updates, generally only the DSM has to be updated, because the terrain (DTM) is in most 
cases stable. Since LiDAR acquisitions are expensive and time consuming, alternative systems might 
be more suitable for the update of the DSM. For such homogeneous DSM update of whole Europe, 
satellite image photogrammetry would be a more economic alternative, which has to be further 
developed to an operational use for such large area application. 
An operational InSAR DSM is currently also available for purchase from the company Intermap 
Technologies (http://www.intermap.com/nextmap-digital-mapping-program), but it is not clear, if 
there are updates planned for this project.  
 
 

4.2 Agricultural biomass 
 
One main challenge with agricultural biomass is the fast and frequent change of crop types. This 
change often happens annually or even two times a year.  
In order to realize a high resolution crop type map, quite some time (often more than a year, if the 
area is large) is needed for data processing. By the time, the classification is done, it may happen, that 
situation has already changed. Thus, optimization potential can be found in operational capability and 
processing speed of crop classifications at the required resolution.  
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A second topic with optimization potential can be identified in direct biomass assessment with SAR. 
The methods should be made more easily understandable, preferable employing open source software 
and accompanied by adequate training material.  
 
Optimization from the legal framework point of view can be found in changing the data 
confidentiality rights. IACS data is generated every year, but it is not available at the original 
resolution for further use such as for biomass potential assessment. This makes duplication of efforts 
necessary.  
 
 

5. Summary & Outlook 
 
In conclusion, a large variety of algorithms to estimate standing forest biomass from remote sensing 
and NFI data are available. Among them, top-down approaches are easier to implement and more 
flexible for frequent updates. Tree height as a main information parameter is still missing in large 
areas and should thus be mapped preferable by LiDAR or for frequent and more economic updates by 
combining LiDAR DTM and satellite photogrammetry-based DSM.  
 
For agricultural biomass, there are not so many papers available integrating remote sensing and 
existing terrestrial data. Most studies use terrestrial data specifically generated for this purpose in 
order to be temporally compatible with the remote sensing imagery. The best operational example is 
probably [Eerens et al., 2001] combining IACS data, satellite imagery and yield models.  
The next steps in CEUBIOM WP 4 will be  

• the detailed analysis of national data sets available in the countries (e.g. specific energy crops 
– area and yield) 

• the analysis of boundary conditions in order to go from the theoretical to a techno-ecological 
or even an economic potential 

• the definition of a harmonized approach taking into account the user requirements, 
combination methods, available data and applying a set of boundary conditions. 



 
 CEUBIOM Contract №: 213634 
 

 22 

6. References: 
 
[A. Bombelli, 2009] A. Bombelli, V. Avitabile, H. B. L. M. M. B. M. B. R. H. M. H. M. H. M. H. 

A. J. B. L. R. M. L. M. H. O. D. P. M. S. C. S. R. S. Y. S. R. V. M. W. (2009). Biomass - 
assessment of the status of the development of the standards for the terrestrial essential climate 
variables. Available at: http://www.fao.org/docrep/012/i1238e/i1238e00.htm, GTOS 
Secretariat, NRL, FAO Viale delle Terme di Caracalla, 00153 Rome, Italy. 

[Asikainen et al., 2008] Asikainen, A., Liiri, H., Peltola, S., Karjalainen, T., and Laitila, J. (2008). 
Forest Energy Potential in Europe (EU 27). Working paper 69, Finnish Forest Research 
Institute. available at: http://www.metla.fi/julkaisut/workingpapers/2008/mwp069.htm. 

[Baffetta et al., 2009] Baffetta, F., Fattorini, L., Franceschi, S., and Corona, P. (2009). Design-based 
approach to k-nearest neighbours technique for coupling field and remotely sensed data. Remote 
Sensing of Environment, 113:463–475. 

[Barth et al., 2009] Barth, A., Wallerman, J., and Stahl, G. (2009). Spatially consistent nearest 
neighbor imputation of forest stand data. Remote Sensing of Environment, 113(3):546–553. 

[Bauerhansl, 2005] Bauerhansl, C. (2005). Satellitenbildeinsatz bei der österreichischen 
Waldinventur. Neue Wege, mehr Information. Powerpoint, Bundesforschungs- und 
Ausbildungszentrum für Wald, Naturgefahren und Landschaft - BFW; Institut für 
Waldinventur. 

[Blackard et al., 2008] Blackard, J., Finco, M., Helmer, E., Holden, G., Hoppus, M., Jacobs, D., 
Lister, A., Moisen, G., Nelson, M., Riemann, R., Ruefenacht, B., Salajanu, D., Weyermann, D., 
Winterberger, K., Brandeis, T., Czaplewski, R., McRoberts, R., Pattterson, P., and Tymcio, R. 
(2008). Mapping U.S. forest biomass using nationwide forest inventory data and moderate 
resolution information. Remote Sensing of Environment, 112:1658–1677. 

[Brown, 1997] Brown, S. (1997). Estimating Biomass and Biomass Change of Tropical Forests: a 
Primer. FAO Forestry Paper 134, FAO. A Forest Resources Assessment publication. 

[Butterfield and Malmström, 2009] Butterfield, H. S. and Malmström, C. M. (2009). The effects 
of phenology on indirect measures of aboveground biomass in annual grasses. International 
Journal of Remote Sensing, 30:3133–3146. 

[Chen et al., 2009] Chen, W., Blain, D., Li, J., Keohler, K., Fraser, R., Zhang, Y., Leblanc, S., 
Olthof, J., Wang, J., and McGovern, M. (2009). Biomass measurements and relationships with 
Landsat-7/ETM+ and JERS-1/SAR data over Canadas western sub-arctic and low arctic. 
International Journal of Remote Sensing, 30:2355–2376. 

[Chopping et al., 2008] Chopping, M., Moisen, G., Su, L., A., L., Rango, A., Martonchik, J. V., and 
C., P. D. P. (2008). Large area mapping of southwestern forest crown cover, canopy height, and 
biomass using zhe NASA Multiangle Imaging Spectro-Radiometer. Remote Sensing of 
Environment, 112:2051–2063. 

[Cook et al., 1996] Cook, P. W., Mueller, R., and Doraiswamy, P. (1996). Southeastern North 
Dakota Landsat TM Crop Mapping Project. Geoscience and Remote Sensing Symposium 
Proceedings, 2:862 – 866. 

[Coulibaly et al., 2008] Coulibaly, L., Migolet, P., Adegbidi, H., Fournier, R., and Hervet, E. (2008). 
Mapping aboveground forest biomass from Ikonos high resolution satellite image and multi-
source geospatial data using neural networks and Kriging interpolation. IEEE International 
Geoscience & Remote Sensing Symposium, pages 1–2. 

[DeWit and Clevers, 2004] DeWit, A. J. W. and Clevers, J. G. P. W. (2004). Efficiency and 
accuracy of per-field classification for operational crop mapping. International Journal of 
Remote Sensing,, 25:4091 – 4112. 

[DiBella et al., 2003] DiBella, C., Faivre, R., Ruget, F., and Seguin, B. (2003). Using 
VEGETATION satellite data and the crop model STICS-Prairie to estimate pasture production 
at the national level in France. Physics and Chemistry of the Earth, Parts A/B/C, 30(1-3):3–9. 

[Dorfinger and Bachhiesl, 2008] Dorfinger, N. and Bachhiesl, U. (2008). GIS unterstützte 
Vergleichsanalyse von Energieholzpotenzialen mit regionalen Wärmeverbrauchswerten zur 



 
 CEUBIOM Contract №: 213634 
 

 23 

Unterstützung regionaler Entscheidungs- und Monitoringprozesse. In Symposium 
Energieinnovation Graz/Austria. 

[Eckmüllner et al., 2007] Eckmüllner, O., Schedl, P., and Sterba, H. (2007). Holz- und 
Biomassenaufkommensstudie für Österreich - Schaftkurven und Ausformung. In DVFFA 
Sektion Ertragskunde, Jahrestagung, pages 1–12. 

[Eerens et al., 2001] Eerens, H., Kempeneers, P., Piccard, I., and Verheijen, Y. (2001). Crop 
Monitoring and Yield Forecasting with NOAA-AVHRR or SPOT-VEGETATION. Remote 
Sensing of Envionment, 75:15–20. 

[European Environment Agency - EEA, 2006] European Environment Agency - EEA (2006). How 
much bioenergy can Europe produce without harming the environment? Technical Report 
7/2006, EEA- Report. 

[European Environment Agency - EEA, 2007] European Environment Agency - EEA (2007). 
Environmentally compatible bio-energy potential from European forests. Technical report, EEA 
- Report. 

[FAO, 2001] FAO (2001). Global Forest Resources Assessment: Main report. ftp://ftp.fao.org/-
docrep/fao/003/Y1997E/FRA%202000%20Main%20report.pdf. 

[FAO, 2006] FAO (2006). Global Forest Resources Assessment 2005. http://www.fao.org/-
DOCREP/008/a0400e/a0400e00.htm. accessed 16 Feb 2009. 

[Feingersh et al., 2001] Feingersh, T., Gorte, B. G. H., and Leeuwen, H. J. C. V. (2001). Fusion of 
SAR and SPOT image data for crop mapping. Geoscience and Remote Sensing Symposium, 
2:873–875. 

[Forschungszentrum Wald - BFW, 2008] Forschungszentrum Wald - BFW (2008). 
Zwischenergebnisse der Holz- und Biomasseaufkommensstudie liefern gute Argumente für 
Umstieg auf Erneuerbare Energie. BFW. 

[Forschungszentrum Wald - BFW, 2009] Forschungszentrum Wald - BFW (2009). Holz- und 
biomassestudie. ISSN 1815-3895. 

[Galinski, 2005] Galinski, W. (2005). CARBO-Invent Final Report to the EC: WP 6 Top-down 
integration of BEF’s and soil carbon data with existing forest inventories. Technical report, 
Joanneum Research. available online at: 
http://www.joanneum.at/carboinvent/topdown_integration.php. 

[Gallaun et al., 2005] Gallaun, H., Maekelae, H., Tomppo, E., Wack, R., and Schardt, M. (2005). 
CarboInvent: Remote sensing based methods including guidelines for their application. 
Carboinvent deliverable 4.2, Joanneum Research. 

[Gallaun et al., 2010] Gallaun, H., Zanchi, G., Nabuurs, G.-J., Hengeveld, G., Schardt, M., and 
Verkerk, P. (2010). EU-wide maps of growing stock and above-ground biomass in forests based 
on remote sensing and field measurements. Forest Ecology and Management. in press, online 
available: doi:10.1016/j.foreco.2009.10.011. 

[Gallego, 1999] Gallego, F. J. (1999). Crop Area Estimation in the MARS Project. In Conference of 
ten years of the MARS Project, Brussels. 

[Garzuglia and Saket, 2003] Garzuglia, M. and Saket, M. (2003). Wood Volume and Woody 
Biomass: Review of FRA 2000 Estimates. Working paper 68, FAO, Rome. Available at: 
ftp://ftp.fao.org/docrep/fao/007/ae153e/ae153e00.pdf. 

[GEOLAND2, 2009] GEOLAND2 (2009). geoland2 - Implementation of the Land Core Service 
(Summary description of products and services) GMES core-services under the Seventh 
Framework Programme. available online at: 
http://ec.europa.eu/enterprise/policies/space/files/research/geoland2_core_products_and_service
s_en.pdf. 

[Gjertsen, 2007] Gjertsen, A. K. (2007). Accuracy of forest mapping based on Landsat TM 
data and a kNN-based method. Remote Sensing of Environment, 110(4):420–430. 

[González-Alonso and Cuevas, 1997] González-Alonso, F. and Cuevas, J. M. (1997). Remote 
sensing and agricultural statistics: crop area estimation in north-eastern Spain through 
diachronic Landsat TM and ground sample data. International Journal for Remote Sensing, 
18:467–470. available at: 



 
 CEUBIOM Contract №: 213634 
 

 24 

http://envisat.esa.int/workshops/meris_aatsr2005/participants/102/paper_GONZALEZ_ALONS
O_ETAL.pdf. 

[González-Alonso et al., 2005] González-Alonso, F., de Miguel, S. M., Roldán-Zamarrón, A., 
García-Gigorro, S., and Cuevas, J. M. (2005). Forest Biomass using Satellite Data. pages 1–6. 
available at: 
http://envisat.esa.int/workshops/meris_aatsr2005/participants/102/paper_GONZALEZ_ALONS
O_ETAL.pdf. 

[González-Alonso et al., 2006] González-Alonso, F., Roldán-Zamarrón, A., and Cuevas-Gozalo, 
J. M. (2006). Assessing Forest Carbon Sinks in Spain using Satellite Images. In IEEE 
International Conference onGeoscience and Remote Sensing Symposium - IGARSS 2006. 

[Gschwantner, 2009] Gschwantner, T. (2009). Technische und ökonomische Rahmenbedingungen 
der modellierten Holzernte. BFW - Praxisinformation, 18:10–12. 

[GSE-FM, 2010] GSE-FM (2010). GSEFM Stem Volume, Biomass and Carbon Statistics: 
Product Sheet. http://www.gmes-
forest.info/sites/default/files/page/2010/01/GSEFM_StemVolume_BiomassCarbonStatistics_Pr
oductSheet.pdf. 

[Haapanen and Tuominen, 2008] Haapanen, R. and Tuominen, S. (2008). Data combination 
and feature selection for multi-purpose forest inventory. Photogrammetric Engineering & 
Remote Sensing, 74:869 – 880. 

[Hasenauer et al., 1994] Hasenauer, H., Stampfer, E., Rohrmoser, C., and Sterba, H. (1994). 
Solitärdimensionen der wichtigsten Baumarten Österreichs. Österreichische Forstzeitung, 3:28–
29. 

[Herold et al., 2008] Herold, M., Brady, M., Wulder, M., and Kalensky, D. (2008). BIOMASS. 
FAO - ECV (Essential Climate Variables), pages 34–35. available at: 
ftp://ftp.fao.org/docrep/fao/011/i0197e/i0197e16.pdf. 

[Hese et al., 2004] Hese, S., Schmullius, C., Dubayah, R., Lucht, W., and Barnsley, M. (2004). 
The earth observation mission Carbon-3D - A Synergetic multi-sensor approach to global 
biomass mapping for an improved understanding of the CO2 balance. International Society for 
Photogrammetry and Remote Sensing, pages 301–306. 

[Hu et al., 1996] Hu, H., Shibasaki, R., and O.Box, E. (1996). Generation of Global Terrestrial 
Biomass Map by Integrating Satellite Data and Carbon Dynamics Model. GIS Development - 
The Geospatial Resource Portal, pages 1–2. 

[Jennings et al., 2010] Jennings, S., Daugherty, P., and Yow, T. (2010). Integrating Ground-Based 
EO Data in Satellite-Based Systems. available at: http://www.techscribes.com/EOGEO.htm. 

[Kallio et al., 2004] Kallio, A., Moiseyev, A., and Solberg, B. (2004). The global forest sector 
model EFI-GTM - The model structure. EFI Internal Report 15, European Forest Institute, 
Joensuu. 24 p. 

[Karnchanasutham et al., 1995] Karnchanasutham, S., Pongsihadldchai, A., and Rodprom, C. (1995). 
Assessment of ERS-l SAR Data for Rice Crop Mapping and Monitoring. GIS Development - 
The Geospatial Resource Portal, pages 1–3. 

[Koch et al., 2009] Koch, B., Straub, C., Dees, M., Wang, Y., and Weinacker, H. (2009). 
Airborne laser data for stand delineation and information extraction. International Journal of 
Remote Sensing, 30:935–963. 

[Koukal and Schneider, 2004] Koukal, T. and Schneider, W. (2004). Remote Sensing Data in the 
Inventory of High-Structured Forests in Mountainous Regions. H. Hasenauer and A. Mäkelä: 
International Conference on Modeling Forest Production, pages 224–233. 

[Ledermann and Neumann, 2009] Ledermann, T. and Neumann, M. (2009). Prognose des 
Waldwachstums und des Nutzungspotenzials. BFW - Praxisinformation, 18:5–7. 

[Magnussen et al., 2009] Magnussen, S., McRoberts, R. E., and Tomppo, E. O. (2009). Model-
based mean square error estimators for k-nearest neighbour predictions and applications using 
remotely sensed data for forest inventories. Remote Sensing of Environment, 113:476–488. 

[McNairn et al., 2000] McNairn, H., van der Sanden, J. J., Brown, R. J., and Ellis, J. (2000). The 
Potential of RADARSAT-2 for Crop Mapping and Assessing Crop Condition. Second 



 
 CEUBIOM Contract №: 213634 
 

 25 

International Conference on Geospatial Information in Agriculture and Forestry, Lake Buena 
Vista, Florida, pages 81–88. 

[McRoberts, 2009a] McRoberts, R. E. (2009a). Diagnostic tools for nearest neighbour techniques 
when used with satellite imagery. Remote Sensing of Environment, 113:489–499. 

[McRoberts, 2009b] McRoberts, R. E. (2009b). A two-step nearest neighbour algorithm using 
satellite imagery for predicting forest structure within species composition classes. Remote 
Sensing of Environment, 113:532–545. 

[Quinones and Hoekman, 2002] Quinones, M. J. and Hoekman, D. H. (2002). Biomass mapping using 
biophysical forest type characterisation of SAR polarimetric images. ESA Publications 
Division, pages 25–31. 

[Rauste, 2005] Rauste, Y. (2005). Multi-temporal JERS SAR data in boreal forest biomass mapping. 
Remote Sensing of Environment, 97:263 – 275. 

[Roy and Ravan, 1996] Roy, P. S. and Ravan, S. A. (1996). Biomass estimation using satellite remote 
sensing data. An investigation on possible approaches for natural forest. J. Biosci, 21(4):535–
561. 

[Santos et al., 2004] Santos, J. R., Neeff, T., Dutra, L. V., Araujo, L. S., Gama, F. F., and Elmiro, 
M. A. T. (2004). Tropical forest biomass mapping from dual frequency SAR interferometry (X 
and P- Bands). ISPRS Congress Istanbul, Proceedings of Commission, pages 1–4. 

[Seyfried, 2008] Seyfried, F. (2008). RENEW - Renewable fuels for advanced powertrains - 
WP5.1 Biomass resources assessment. Technical report, EC FP6. 

[Simard et al., 2008] Simard, M., Riveramonroy, V., Mancerapineda, J., Castanedamoya, E., and 
Twilley, R. (2008). A systematic method for 3D mapping of mangrove forests based on Shuttle 
Radar Topography Mission elevation data, ICEsat/GLAS waveforms and field data: 
Application to Ciénaga Grande de Santa Marta, Colombia. Remote Sensing of Environment, 
112(5):2131–2144. 

[St-Onge et al., 2008] St-Onge, B., Hu, Y., and Vega, C. (2008). Mapping the height and above-
ground biomass of a mixed forest using lidar and stereo ikonos images. International Journal of 
Remote Sensing, 29(5):1277–1294. 

[Suba et al., 2009] Suba, Z., Csornai, G., Wirnhardt, C., Nádor, G., Tikász, L., Martinovich, L., 
Kocsis, A., Zelei, G., László, I., and Bognár, E. (2009). Cartography in Central and Eastern 
Europe, chapter The Remote Sensing Based Hungarian Crop Production Forecast Program 
(Cropmon) and its Other Applications, pages 457–471. Number ISSN: 1863-2246. Springer 
Berlin Heidelberg. DOI: 10.1007/978-3-642-03294-3. 

[Thenkabail et al., 2004] Thenkabail, P. S., Stucky, N., Griscom, B. W., Ashton, M. S., Diels, 
J., Van der Meer, B., and Enclona, E. (2004). Biomass estimations and carbon stock 
calculations in the oil palm plantations of African derived savannas using IKONOS data. 
International Journal of Remote Sensing, 25(23):5447–5472. 

[Tomppo et al., 2002] Tomppo, E. O., Nilsson, M., Rosengren, M., Aalto, P., and Kennedy, P. 
(2002). Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree 
stem volume and aboveground biomass. Remote Sensing of Environment, 82:156–171. 

[Tomppo et al., 2008] Tomppo, E. O., Olsson, H., Stahl, G., Nilsson, M., Hagner, O., and Katila, M. 
(2008). Combining national forest inventory field plots and remote sensing data for forest 
databases. Remote Sensing of Environment, 112:1982–1999. 

[Wardlow and Egbert, 2008] Wardlow, B. D. and Egbert, S. L. (2008). Large-area crop mapping 
using time-series MODIS 250 m NDVI data : An assessment for the U.S. Central Great Plains. 
Remote sensing of environment, 112:1096–1116. 

[Yamamoto et al., 2008] Yamamoto, H., Kajiwara, K., and Honda, Y. (2008). The study on 
biomass estimation in Mongolian Grassland using satellite data and field measurement data. 
Center for Environmental Remote Sensing, Chiba University, pages 1–9. 

[Zheng et al., 2004] Zheng, D., Rademacher, J., Chen, J., Crow, T., Bresee, M., Moine, J. L., and 
Ryu, S. R. (2004). Estimating aboveground biomass using Landsat 7 ETM+ data across a 
managed landscape in northern Wisconsin, USA. Remote Sensing of Environment, 93:402–411. 

 


